Julius Lee

RE: 408075 -

1109 Coastal Bay Blvd. Boynton Beach, FL 33435

Site Information:

Project Customer: Dreambuilder Custom Homes Project Name: 408075 Model: Custom Lot/Block: 1 Subdivision: Avalon Address:

City: Duval

State: Florida

Name Address and License # of Structural Engineer of Record, If there is one, for the building.Name: Pontigo, Luis Antonio, PELicense #: 53311Address: 420 Osceola Ave.State: Florida

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2010/TPI2007 Wind Code: ASCE 7-10 Wind Speed: 130 mph Roof Load: 32.0 psf Design Program: MiTek 20/20 7.3 Floor Load: N/A psf

This package includes 40 individual, dated Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules. This document processed per section 16G15-23.003 of the Florida Board of Professionals Rules

In the event of changes from Builder or E.O.R. additional coversheets and drawings may accompany this coversheet. The latest approval dates supersede and replace the previous drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	15336137	CJ02	3/15/012	18	15336154	HJ09	3/15/012
2	15336138	CJ03	3/15/012	19	15336155	P01	3/15/012
3	15336139	CJ04	3/15/012	20	15336156	T01	3/15/012
4	15336140	CJ05	3/15/012	21	15336157	T02G	3/15/012
5	15336141	CJ06	3/15/012	22	15336158	T03	3/15/012
6	15336142	CJ07	3/15/012	23	15336159	T04	3/15/012
7	15336143	CJ08	3/15/012	24	15336160	T05	3/15/012
8	15336144	EJ01	3/15/012	25	15336161	T06	3/15/012
9	15336145	EJ02	3/15/012	26	15336162	T07	3/15/012
10	15336146	EJ04	3/15/012	27	15336163	T08	3/15/012
11	15336147	EJ05	3/15/012	28	15336164	T08G	3/15/012
12	15336148	EJ06	3/15/012	29	15336165	T09	3/15/012
13	15336149	EJ07	3/15/012	30	15336166	T10	3/15/012
14	15336150	HJ02	3/15/012	31	15336167	T11	3/15/012
15	15336151	HJ04	3/15/012	32	15336168	T12	3/15/012
16	15336152	HJ07	3/15/012	33	15336169	T13	3/15/012
17	15336153	HJ08	3/15/012	34	15336170	T14	3/15/012

The truss drawing(s) referenced above have been prepared by MiTek Industries, Inc. under my direct supervision based on the parameters provided by Builders FirstSource (Jax).

Truss Design Engineer's Name: Julius Lee

My license renewal date for the state of Florida is February 28, 2013.

NOTE: The seal on these drawings indicate acceptance of professional engineering responsibility solely for the truss components shown. The suitability and use of this component for any particular building is the responsibility of the building designer, per ANSI/TPI-1 Chapter 2.

Julius Lee

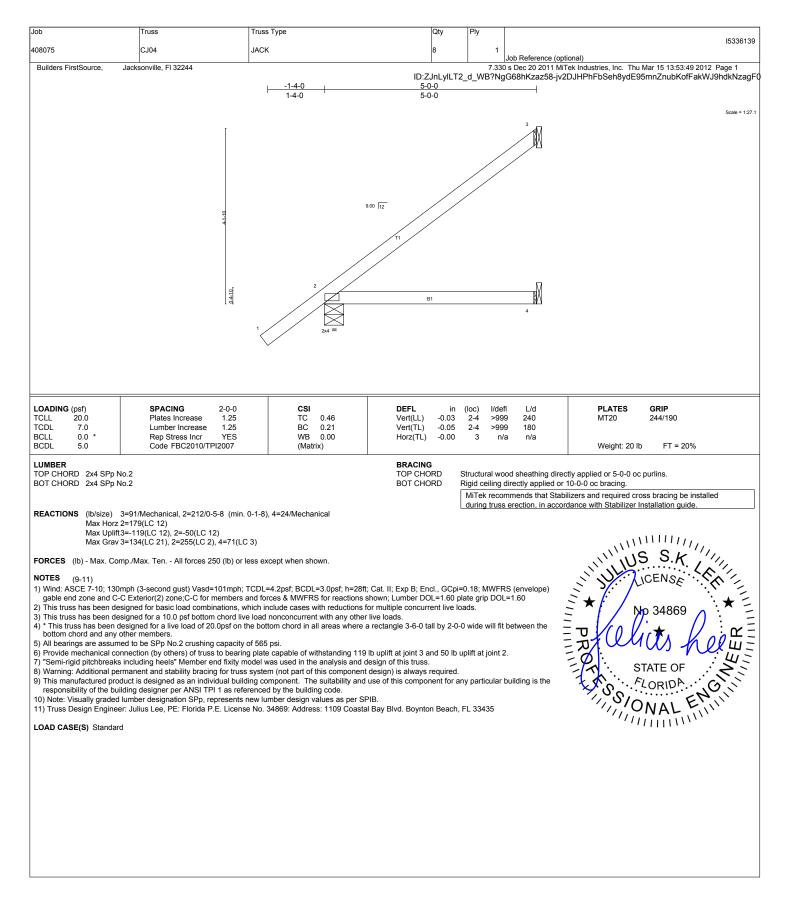
RE: 408075 -

Site Information:

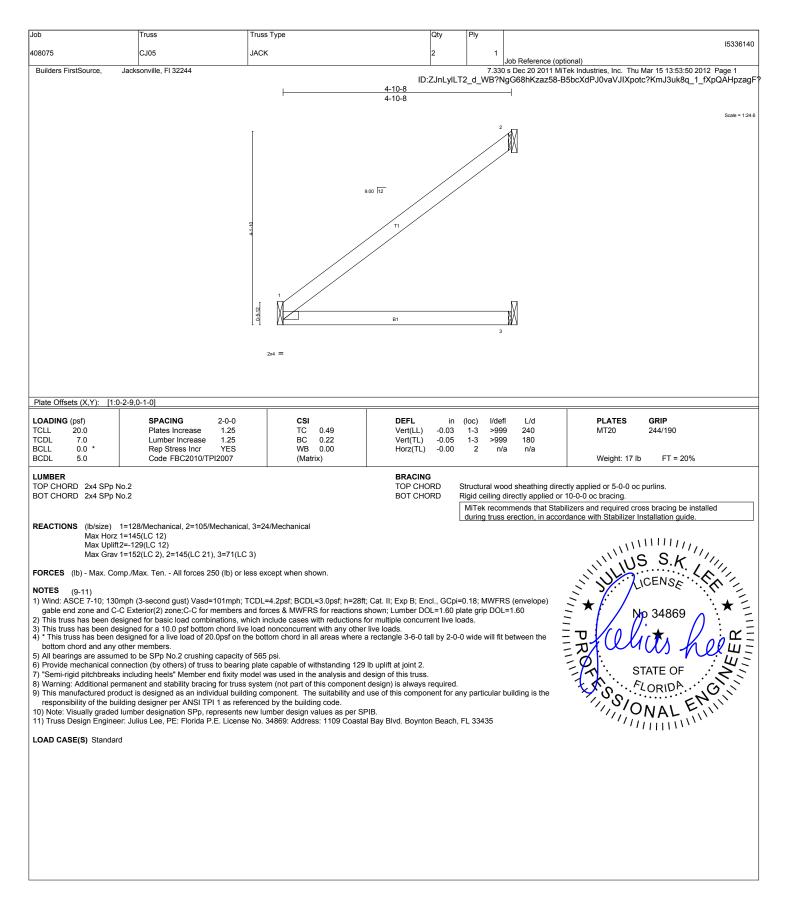
Project Customer: Dreambuilder Custom Homes Project Name: 408075 Model: Custom Lot/Block: 1 Subdivision: Avalon Address:

City: Duval

State: Florida


No.	Seal#	Truss Name	Date
35	15336171	T15	3/15/012
36	15336172	T16	3/15/012
37	15336173	T18	3/15/012
38	15336174	T19	3/15/012
39	15336175	T20G	3/15/012
40	15336176	T21	3/15/012

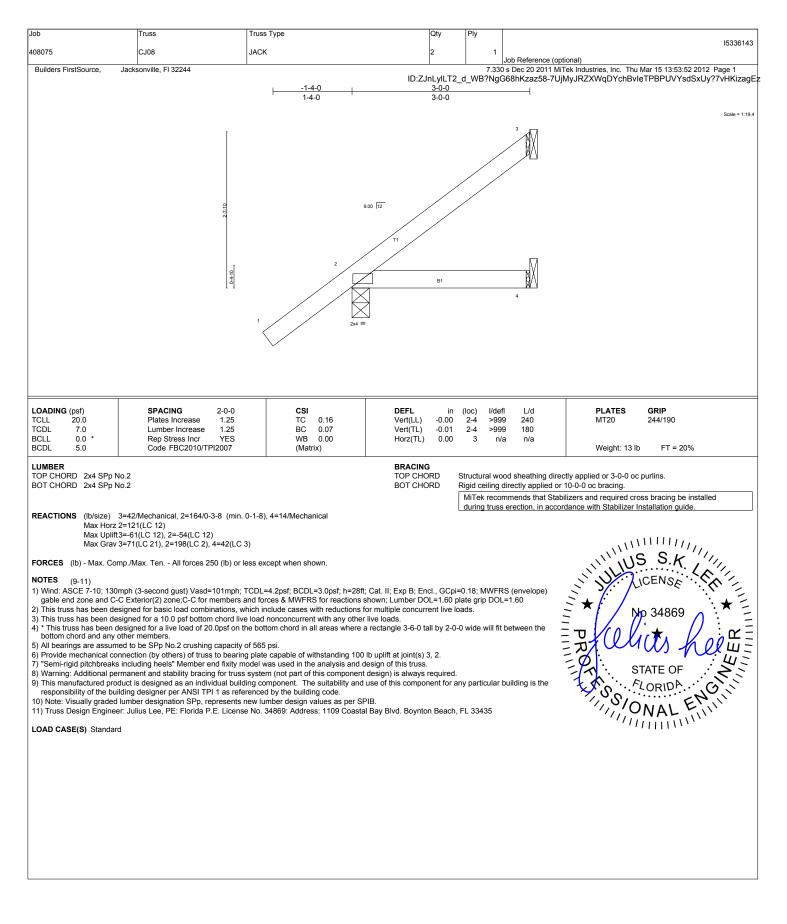
	Truss	Truss Type	Qty	Ply		
408075	CJ02	JACK	10	1		15336137
Builders FirstSource,	Jacksonville, FI 32244			7.330		k Industries, Inc. Thu Mar 15 13:53:48 2012 Page 1
		-1-4-	-0	1-0-0	3hKzaz58-FiUr6x0	D3UHKn4_NQgSaXFLEomxVgW8UM4Vx3CxzagF
		' 1-4-	0	1-0-0		
				3		Scale = 1:11.5
	Ī					
					MÅ	
	a		/	/ /	M	
			9.00 12 2			
		ļ		/	-MV	
			т1	B1	$\dot{\gamma}$	
	Ţ	1		4		
				>		
			$/$ \mid			
		1	2x4 =			
		1	- 1			
LOADING (psf)	SPACING 2-0-0	CSI		(loc) l/defl		PLATES GRIP
TCLL 20.0 TCDL 7.0	Plates Increase 1.25 Lumber Increase 1.25	TC 0.15 BC 0.01	Vert(LL) -0.00 Vert(TL) -0.00	2 >999 2 >999	180	MT20 244/190
BCLL 0.0 * BCDL 5.0	Rep Stress Incr YES Code FBC2010/TPI2007	WB 0.00 (Matrix)	Horz(TL) 0.00	3 n/a	i n/a	Weight: 6 lb FT = 20%
LUMBER			BRACING			
TOP CHORD 2x4 SPp N BOT CHORD 2x4 SPp N					od sheathing directl irectly applied or 10	y applied or 1-0-0 oc purlins. 0-0-0 oc bracing.
						zers and required cross bracing be installed
				during truce		
	2=140/0-5-8 (min. 0-1-8), 4=5/Mec	anical, 3=-30/Mechanical		during truss	erection in accord	ance with Stabilizer Installation quide
Max Horz 2 Max Uplift2	2=64(LC 12) 2=-81(LC 12), 3=-36(LC 2)			during truss	erection in accord	ance with Stabilizer Installation quide
Max Horz 2 Max Uplift2 Max Grav 2	2=64(LC 12) 2=-81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC	16)		during truss	erection in accord	ance with Stabilizer Installation quide
Max Horz 2 Max Uplift2 Max Grav 2 FORCES (Ib) - Max. Con	2=64(LC 12) 2=-81(LC 12), 3=-36(LC 2)	16)		during truss	erection in accord	ance with Stabilizer Installation quide
Max Horz 3 Max Uplift Max Grav 2 FORCES (Ib) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 130r	2=64(LC 12) 2=-81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC mp./Max. Ten All forces 250 (lb) o mph (3-second gust) Vasd=101mph	16) less except when shown. ; TCDL=4.2psf; BCDL=3.0psf; h=28		0.18; MWFR	erection in accord	ance with Stabilizer Installation quide
Max Horz 2 Max Uplift Max Uplift Max Grav 2 FORCES (Ib) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 130r gable end zone and C-0	2=64(LC 12) 2=-81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC mp./Max. Ten All forces 250 (lb) o mph (3-second gust) Vasd=101mph C Exterior(2) zone;C-C for member	16) less except when shown. ; TCDL=4.2psf; BCDL=3.0psf; h=28 and forces & MWFRS for reactions	s shown; Lumber DOL=1.60 p	0.18; MWFR	erection in accord	ance with Stabilizer Installation quide
Max Horz 2 Max Uplift Max Grav 2 FORCES (Ib) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 130r gable end zone and C-0 2) This truss has been des 3) This truss has been des	2=64(LC 12) 2=-81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC mp./Max. Ten All forces 250 (lb) o mph (3-second gust) Vasd=101mph C Exterior(2) zone;C-C for member signed for basic load combinations, signed for a 10.0 psf bottom chord 1	16) less except when shown. ; TCDL=4.2psf; BCDL=3.0psf; h=28 and forces & MWFRS for reactions which include cases with reductions ve load nonconcurrent with any oth	s shown; Lumber DOL=1.60 p s for multiple concurrent live lo er live loads.	0.18; MWFR ate grip DOL= ads.	S (envelope) =1.60	Ance with Stabilizer Installation guide.
Max Horz 2 Max Uplift: Max Grav 2 FORCES (lb) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 130r gable end zone and C-(2) This truss has been des 3) This truss has been des 4) * This truss has been des 4) * This truss has been des	2=64(LC 12) 2=-81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC mp./Max. Ten All forces 250 (lb) o mph (3-second gust) Vasd=101mpf C Exterior(2) zone;C-C for members signed for basic load combinations, signed for a 10.0 psf bottom chord I lesigned for a live load of 20.0psf or other members.	16) Iess except when shown. TCDL=4.2psf; BCDL=3.0psf; h=28 and forces & MWFRS for reactions which include cases with reductions ve load nonconcurrent with any oth the bottom chord in all areas where	s shown; Lumber DOL=1.60 p s for multiple concurrent live lo er live loads.	0.18; MWFR ate grip DOL= ads.	S (envelope) =1.60	ance with Stabilizer Installation guide. S.K CENSE Np 34869
Max Horz 2 Max Uplift Max Grav 2 FORCES (Ib) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 130r gable end zone and C-(2) This truss has been des 3) This truss has been des 4) * This truss has been de bottom chord and any co 5) All bearings are assume 6) Provide mechanical cor	2=64(LC 12) 2=-81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC mp./Max. Ten All forces 250 (lb) o mph (3-second gust) Vasd=101mph C Exterior(2) zone;C-C for member signed for basic load combinations, signed for basic load of 20.0psf or other members. ed to be SPp No.2 crushing capacit nection (by others) of fruss to bear	16) less except when shown. ; TCDL=4.2psf; BCDL=3.0psf; h=26 and forces & MWFRS for reactions which include cases with reductions ve load nonconcurrent with any oth the bottom chord in all areas where y of 565 psi. ng plate capable of withstanding 81	s shown; Lumber DOL=1.60 p s for multiple concurrent live lo er live loads. e a rectangle 3-6-0 tall by 2-0- l lb uplift at joint 2 and 36 lb up	0.18; MWFR ate grip DOL= ads. 0 wide will fit t	S (envelope) =1.60	ance with Stabilizer Installation guide. S.K CENSE Np 34869
Max Horz 2 Max Uplift: Max Grav 2 FORCES (Ib) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 130r gable end zone and C-(2) This truss has been des 3) This tru	2=64(LC 12) 2=-81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC mp./Max. Ten All forces 250 (lb) o mph (3-second gust) Vasd=101mph C Exterior(2) zone;C-C for members signed for basic load combinations, signed for a 10.0 psf bottom chord I lesigned for a live load of 20.0psf or other members. ed to be SPp No.2 crushing capacit nnection (by others) of fruss to bear i including heels" Member end fixity manent and stability bracing for tru	16) Iess except when shown. ; TCDL=4.2psf; BCDL=3.0psf; h=28 and forces & MWFRS for reactions which include cases with reductions ve load nonconcurrent with any oth the bottom chord in all areas where y of 565 psi. ng plate capable of withstanding 81 model was used in the analysis and is system (not part of this compone	s shown; Lumber DOL=1.60 p s for multiple concurrent live lo er live loads. e a rectangle 3-6-0 tall by 2-0- l buplift at joint 2 and 36 lb up i design of this truss. nt design) is always required.	0.18; MWFR8 ate grip DOL= ads. D wide will fit t	S (envelope) =1.60	ance with Stabilizer Installation guide. S.K CENSE Np 34869
Max Horz 2 Max Upift? Max Grav 2 FORCES (lb) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 130r gable end zone and C-(2) This truss has been des 3) This truss has been des 4) * This truss has been des 4) * This truss has been des 5) All bearings are assums 6) Provide mechanical cor 7) "Semi-rigid pitchbreaks 8) Warning: Additional per 9) This manufactured proc responsibility of the buil	2=64(LC 12) 2=81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC mp./Max. Ten All forces 250 (lb) o mph (3-second gust) Vasd=101mpf C Exterior(2) zone;C-C for member signed for basic load combinations, signed for a 10.0 psf bottom chord I lesigned for a 10.0 psf bottom chord I lesigned for a 10.0 z crushing capacit nnection (by others) of truss to bear including heels" Member end fixity rmanent and stability bracing for tru duct is designed as an individual bu lding designer per ANSI TP1 1 as re	16) less except when shown. ; TCDL=4.2psf; BCDL=3.0psf; h=26 ; and forces & MWFRS for reactions which include cases with reductions which include cases with reductions ve load nonconcurrent with any oth the bottom chord in all areas where v of 565 psi. ng plate capable of withstanding 81 model was used in the analysis and is system (not part of this compone Iding component. The suitability an irrenced by the building code.	s shown; Lumber DOL=1.60 p s for multiple concurrent live lo er live loads. e a rectangle 3-6-0 tall by 2-0- l lb uplift at joint 2 and 36 lb up d design of this truss. nt design) is always required. Id use of this component for a	0.18; MWFR8 ate grip DOL= ads. D wide will fit t	S (envelope) =1.60	Ance with Stabilizer Installation guide.
Max Horz 2 Max Uplift: Max Grav 2 FORCES (lb) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 130r gable end zone and C-C 2) This truss has been des 3) This truss has been des 4) * This truss has been des 3) This truss has been des 4) * This truss has been des 3) This truss has been des 4) * This truss has been des 3) This truss has been des 4) * This truss has been des 3) This truss has been des 4) * This truss has been des 6) * This truss has been des 7) * This truss has been des 8) * This truss has bee	2=64(LC 12) 2=-81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC mp./Max. Ten All forces 250 (lb) o mph (3-second gust) Vasd=101mph C Exterior(2) zone;C-C for member signed for basic load combinations, signed for a low load of 20.0psf or there members. ed to be SPp No.2 crushing capacit innection (by others) of trust to bear including heels" Member end fixity rmanent and stability bracing for tru duct is designed as an individual bu	16) less except when shown. TCDL=4.2psf; BCDL=3.0psf; h=28 and forces & MWFRS for reactions which include cases with reductions ve load nonconcurrent with any oth the bottom chord in all areas where y of 565 psi. ng plate capable of withstanding 81 model was used in the analysis and ss system (not part of this component Iding component. The suitability an ferenced by the building code. new lumber design values as per 5	s shown; Lumber DOL=1.60 p s for multiple concurrent live lo er live loads. e a rectangle 3-6-0 tall by 2-0- l b uplift at joint 2 and 36 lb up i design of this truss. In design j is always required. Id use of this component for al SPIB.	0.18; MWFR8 late grip DOL= ads. D wide will fit t D wide will fit t D wide will fit t D wide will fit t	S (envelope) =1.60	Np 34869 PD 0114 STATE OF STATE OF
Max Horz : Max Upift: Max Grav 2 FORCES (lb) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 130r gable end zone and C-(2) This truss has been de 3) This truss has been de 4) * This truss has been de bottom chord and any c 5) All bearings are assum 6) Provide mechanical cor 7) "Semi-rigid pitchbreaks 8) Warning: Additional per 9) This manufactured proc responsibility of the buil 10) Note: Visually graded 11) Truss Design Enginee	2=64(LC 12) 2=81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC mp./Max. Ten All forces 250 (lb) o mph (3-second gust) Vasd=101mpf C Exterior(2) zone;C-C for member signed for basic load combinations, signed for a 10.0 psf bottom chord I lesigned for a live load of 20.0psf or other members. ed to be SPp No.2 crushing capacit nnection (by others) of truss to bear including heels" Member end fixity rmanent and stability bracing for tru duct is designed as an individual bu Iding designer per ANSI TPI 1 as re lumber designation SPp, represent er. Julius Lee, PE: Florida P.E. Licer	16) less except when shown. TCDL=4.2psf; BCDL=3.0psf; h=28 and forces & MWFRS for reactions which include cases with reductions ve load nonconcurrent with any oth the bottom chord in all areas where y of 565 psi. ng plate capable of withstanding 81 model was used in the analysis and ss system (not part of this component Iding component. The suitability an ferenced by the building code. new lumber design values as per 5	s shown; Lumber DOL=1.60 p s for multiple concurrent live lo er live loads. e a rectangle 3-6-0 tall by 2-0- l b uplift at joint 2 and 36 lb up i design of this truss. In design j is always required. Id use of this component for al SPIB.	0.18; MWFR8 late grip DOL= ads. D wide will fit t D wide will fit t D wide will fit t D wide will fit t	S (envelope) =1.60	Ance with Stabilizer Installation guide.
Max Horz : Max Upift: Max Grav 2 FORCES (lb) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 130r gable end zone and C-(2) This truss has been de 3) This truss has been de 4) * This truss has been de 4) * This truss has been de bottom chord and any c 5) All bearings are assum chord and any c 5) All bearings are assum 6) Provide mechanical cor 7) "Semi-rigid pitchbreaks 8) Warning: Additional per 9) This manufactured proc responsibility of the buil 10) Note: Visually graded 11) Truss Design Enginee	2=64(LC 12) 2=81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC mp./Max. Ten All forces 250 (lb) o mph (3-second gust) Vasd=101mpf C Exterior(2) zone;C-C for member signed for basic load combinations, signed for a 10.0 psf bottom chord I lesigned for a live load of 20.0psf or other members. ed to be SPp No.2 crushing capacit nnection (by others) of truss to bear including heels" Member end fixity rmanent and stability bracing for tru duct is designed as an individual bu Iding designer per ANSI TPI 1 as re lumber designation SPp, represent er. Julius Lee, PE: Florida P.E. Licer	16) less except when shown. TCDL=4.2psf; BCDL=3.0psf; h=28 and forces & MWFRS for reactions which include cases with reductions ve load nonconcurrent with any oth the bottom chord in all areas where y of 565 psi. ng plate capable of withstanding 81 model was used in the analysis and ss system (not part of this component Iding component. The suitability an ferenced by the building code. new lumber design values as per 5	s shown; Lumber DOL=1.60 p s for multiple concurrent live lo er live loads. e a rectangle 3-6-0 tall by 2-0- l b uplift at joint 2 and 36 lb up i design of this truss. In design j is always required. Id use of this component for al SPIB.	0.18; MWFR8 late grip DOL= ads. D wide will fit t D wide will fit t D wide will fit t D wide will fit t	S (envelope) =1.60	Np 34869 PD 0114 STATE OF STATE OF
Max Horz : Max Upift: Max Grav 2 FORCES (lb) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 130r gable end zone and C-(2) This truss has been de 3) This truss has been de 4) * This truss has been de bottom chord and any c 5) All bearings are assum 6) Provide mechanical cor 7) "Semi-rigid pitchbreaks 8) Warning: Additional per 9) This manufactured proc responsibility of the buil 10) Note: Visually graded 11) Truss Design Enginee	2=64(LC 12) 2=81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC mp./Max. Ten All forces 250 (lb) o mph (3-second gust) Vasd=101mpf C Exterior(2) zone;C-C for member signed for basic load combinations, signed for a 10.0 psf bottom chord I lesigned for a live load of 20.0psf or other members. ed to be SPp No.2 crushing capacit nnection (by others) of truss to bear including heels" Member end fixity rmanent and stability bracing for tru duct is designed as an individual bu Iding designer per ANSI TPI 1 as re lumber designation SPp, represent er. Julius Lee, PE: Florida P.E. Licer	16) less except when shown. TCDL=4.2psf; BCDL=3.0psf; h=28 and forces & MWFRS for reactions which include cases with reductions ve load nonconcurrent with any oth the bottom chord in all areas where y of 565 psi. ng plate capable of withstanding 81 model was used in the analysis and ss system (not part of this component Iding component. The suitability an ferenced by the building code. new lumber design values as per 5	s shown; Lumber DOL=1.60 p s for multiple concurrent live lo er live loads. e a rectangle 3-6-0 tall by 2-0- l b uplift at joint 2 and 36 lb up i design of this truss. In design j is always required. Id use of this component for al SPIB.	0.18; MWFR8 late grip DOL= ads. D wide will fit t D wide will fit t D wide will fit t D wide will fit t	S (envelope) =1.60	Np 34869 PD 0114 STATE OF STATE OF
Max Horz 2 Max Uplift: Max Grav 2 FORCES (lb) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 130r gable end zone and C-(2) This truss has been des 3) This tru	2=64(LC 12) 2=81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC mp./Max. Ten All forces 250 (lb) o mph (3-second gust) Vasd=101mpf C Exterior(2) zone;C-C for member signed for basic load combinations, signed for a 10.0 psf bottom chord I lesigned for a live load of 20.0psf or other members. ed to be SPp No.2 crushing capacit nnection (by others) of truss to bear including heels" Member end fixity rmanent and stability bracing for tru duct is designed as an individual bu Iding designer per ANSI TPI 1 as re lumber designation SPp, represent er. Julius Lee, PE: Florida P.E. Licer	16) less except when shown. TCDL=4.2psf; BCDL=3.0psf; h=28 and forces & MWFRS for reactions which include cases with reductions ve load nonconcurrent with any oth the bottom chord in all areas where y of 565 psi. ng plate capable of withstanding 81 model was used in the analysis and ss system (not part of this component Iding component. The suitability an ferenced by the building code. new lumber design values as per 5	s shown; Lumber DOL=1.60 p s for multiple concurrent live lo er live loads. e a rectangle 3-6-0 tall by 2-0- l b uplift at joint 2 and 36 lb up i design of this truss. In design j is always required. Id use of this component for al SPIB.	0.18; MWFR8 late grip DOL= ads. D wide will fit t D wide will fit t D wide will fit t D wide will fit t	S (envelope) =1.60	Np 34869 PD 0114 STATE OF STATE OF
Max Horz : Max Uplift: Max Grav 2 FORCES (lb) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 130r gable end zone and C-(2) This truss has been de 3) This truss has been de 4) * This truss has been de 4) * This truss has been de bottom chord and any c 5) All bearings are assum 6) Provide mechanical cor 7) "Semi-rigid pitchbreaks 8) Warning: Additional per 9) This manufactured proc responsibility of the buil 10) Note: Visually graded 11) Truss Design Enginee	2=64(LC 12) 2=81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC mp./Max. Ten All forces 250 (lb) o mph (3-second gust) Vasd=101mpf C Exterior(2) zone;C-C for member signed for basic load combinations, signed for a 10.0 psf bottom chord I lesigned for a live load of 20.0psf or other members. ed to be SPp No.2 crushing capacit nnection (by others) of truss to bear including heels" Member end fixity rmanent and stability bracing for tru duct is designed as an individual bu Iding designer per ANSI TPI 1 as re lumber designation SPp, represent er. Julius Lee, PE: Florida P.E. Licer	16) less except when shown. TCDL=4.2psf; BCDL=3.0psf; h=28 and forces & MWFRS for reactions which include cases with reductions ve load nonconcurrent with any oth the bottom chord in all areas where y of 565 psi. ng plate capable of withstanding 81 model was used in the analysis and ss system (not part of this component Iding component. The suitability an ferenced by the building code. new lumber design values as per 5	s shown; Lumber DOL=1.60 p s for multiple concurrent live lo er live loads. e a rectangle 3-6-0 tall by 2-0- l b uplift at joint 2 and 36 lb up i design of this truss. In design j is always required. Id use of this component for al SPIB.	0.18; MWFR8 late grip DOL= ads. D wide will fit t D wide will fit t D wide will fit t D wide will fit t	S (envelope) =1.60	Np 34869 PD 0114 STATE OF STATE OF
Max Horz : Max Upift: Max Grav 2 FORCES (lb) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 130r gable end zone and C-(2) This truss has been de 3) This truss has been de 4) * This truss has been de 4) * This truss has been de bottom chord and any c 5) All bearings are assum chord and any c 5) All bearings are assum 6) Provide mechanical cor 7) "Semi-rigid pitchbreaks 8) Warning: Additional per 9) This manufactured proc responsibility of the buil 10) Note: Visually graded 11) Truss Design Enginee	2=64(LC 12) 2=81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC mp./Max. Ten All forces 250 (lb) o mph (3-second gust) Vasd=101mpf C Exterior(2) zone;C-C for member signed for basic load combinations, signed for a 10.0 psf bottom chord I lesigned for a live load of 20.0psf or other members. ed to be SPp No.2 crushing capacit nnection (by others) of truss to bear including heels" Member end fixity rmanent and stability bracing for tru duct is designed as an individual bu Iding designer per ANSI TPI 1 as re lumber designation SPp, represent er. Julius Lee, PE: Florida P.E. Licer	16) less except when shown. TCDL=4.2psf; BCDL=3.0psf; h=28 and forces & MWFRS for reactions which include cases with reductions ve load nonconcurrent with any oth the bottom chord in all areas where y of 565 psi. ng plate capable of withstanding 81 model was used in the analysis and ss system (not part of this component Iding component. The suitability an ferenced by the building code. new lumber design values as per 5	s shown; Lumber DOL=1.60 p s for multiple concurrent live lo er live loads. e a rectangle 3-6-0 tall by 2-0- l b uplift at joint 2 and 36 lb up i design of this truss. In design j is always required. Id use of this component for al SPIB.	0.18; MWFR8 late grip DOL= ads. D wide will fit t D wide will fit t D wide will fit t D wide will fit t	S (envelope) =1.60	Np 34869 PD 0114 STATE OF STATE OF
Max Horz : Max Uplift: Max Grav 2 FORCES (lb) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 130r gable end zone and C-(2) This truss has been de 3) This truss has been de 4) * This truss has been de 4) * This truss has been de bottom chord and any c 5) All bearings are assum 6) Provide mechanical cor 7) "Semi-rigid pitchbreaks 8) Warning: Additional per 9) This manufactured proc responsibility of the buil 10) Note: Visually graded 11) Truss Design Enginee	2=64(LC 12) 2=81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC mp./Max. Ten All forces 250 (lb) o mph (3-second gust) Vasd=101mpf C Exterior(2) zone;C-C for member signed for basic load combinations, signed for a 10.0 psf bottom chord I lesigned for a live load of 20.0psf or other members. ed to be SPp No.2 crushing capacit nnection (by others) of truss to bear including heels" Member end fixity rmanent and stability bracing for tru duct is designed as an individual bu Iding designer per ANSI TPI 1 as re lumber designation SPp, represent er. Julius Lee, PE: Florida P.E. Licer	16) less except when shown. TCDL=4.2psf; BCDL=3.0psf; h=28 and forces & MWFRS for reactions which include cases with reductions ve load nonconcurrent with any oth the bottom chord in all areas where y of 565 psi. ng plate capable of withstanding 81 model was used in the analysis and ss system (not part of this component Iding component. The suitability an ferenced by the building code. new lumber design values as per 5	s shown; Lumber DOL=1.60 p s for multiple concurrent live lo er live loads. e a rectangle 3-6-0 tall by 2-0- l b uplift at joint 2 and 36 lb up i design of this truss. In design j is always required. Id use of this component for al SPIB.	0.18; MWFR8 late grip DOL= ads. D wide will fit t D wide will fit t D wide will fit t D wide will fit t	S (envelope) =1.60	Np 34869 PD 0114 STATE OF STATE OF
Max Horz : Max Uplift: Max Grav 2 FORCES (lb) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 130r gable end zone and C-(2) This truss has been de 3) This truss has been de 4) * This truss has been de 4) * This truss has been de bottom chord and any c 5) All bearings are assum 6) Provide mechanical cor 7) "Semi-rigid pitchbreaks 8) Warning: Additional per 9) This manufactured proc responsibility of the buil 10) Note: Visually graded 11) Truss Design Enginee	2=64(LC 12) 2=81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC mp./Max. Ten All forces 250 (lb) o mph (3-second gust) Vasd=101mpf C Exterior(2) zone;C-C for member signed for basic load combinations, signed for a 10.0 psf bottom chord I lesigned for a live load of 20.0psf or other members. ed to be SPp No.2 crushing capacit nnection (by others) of truss to bear including heels" Member end fixity rmanent and stability bracing for tru duct is designed as an individual bu Iding designer per ANSI TPI 1 as re lumber designation SPp, represent er. Julius Lee, PE: Florida P.E. Licer	16) less except when shown. TCDL=4.2psf; BCDL=3.0psf; h=28 and forces & MWFRS for reactions which include cases with reductions ve load nonconcurrent with any oth the bottom chord in all areas where y of 565 psi. ng plate capable of withstanding 81 model was used in the analysis and ss system (not part of this component Iding component. The suitability an ferenced by the building code. new lumber design values as per 5	s shown; Lumber DOL=1.60 p s for multiple concurrent live lo er live loads. e a rectangle 3-6-0 tall by 2-0- l b uplift at joint 2 and 36 lb up i design of this truss. In design j is always required. Id use of this component for al SPIB.	0.18; MWFR8 late grip DOL= ads. D wide will fit t D wide will fit t D wide will fit t D wide will fit t	S (envelope) =1.60	Np 34869 PD 0114 STATE OF STATE OF
Max Horz : Max Upiff: Max Crav 2 FORCES (Ib) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 130r gable end zone and C-(2) This truss has been de 3) This truss has been de 4) * This truss has been de bottom chord and any c 5) All bearings are assum 6) Provide mechanical cor 7) "Semi-rigid pitchbreaks 8) Warning: Additional per 9) This manufactured proc responsibility of the buil 10) Note: Visually graded 11) Truss Design Enginee	2=64(LC 12) 2=81(LC 12), 3=-36(LC 2) 2=171(LC 2), 4=14(LC 3), 3=24(LC mp./Max. Ten All forces 250 (lb) o mph (3-second gust) Vasd=101mpf C Exterior(2) zone;C-C for member signed for basic load combinations, signed for a 10.0 psf bottom chord I lesigned for a live load of 20.0psf or other members. ed to be SPp No.2 crushing capacit nnection (by others) of truss to bear including heels" Member end fixity rmanent and stability bracing for tru duct is designed as an individual bu Iding designer per ANSI TPI 1 as re lumber designation SPp, represent er. Julius Lee, PE: Florida P.E. Licer	16) less except when shown. TCDL=4.2psf; BCDL=3.0psf; h=28 and forces & MWFRS for reactions which include cases with reductions ve load nonconcurrent with any oth the bottom chord in all areas where y of 565 psi. ng plate capable of withstanding 81 model was used in the analysis and ss system (not part of this component Iding component. The suitability an ferenced by the building code. new lumber design values as per 5	s shown; Lumber DOL=1.60 p s for multiple concurrent live lo er live loads. e a rectangle 3-6-0 tall by 2-0- l b uplift at joint 2 and 36 lb up i design of this truss. In design j is always required. Id use of this component for al SPIB.	0.18; MWFR8 late grip DOL= ads. D wide will fit t D wide will fit t D wide will fit t D wide will fit t	S (envelope) =1.60	Np 34869 PD 0114 STATE OF STATE OF


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANS/TP11 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

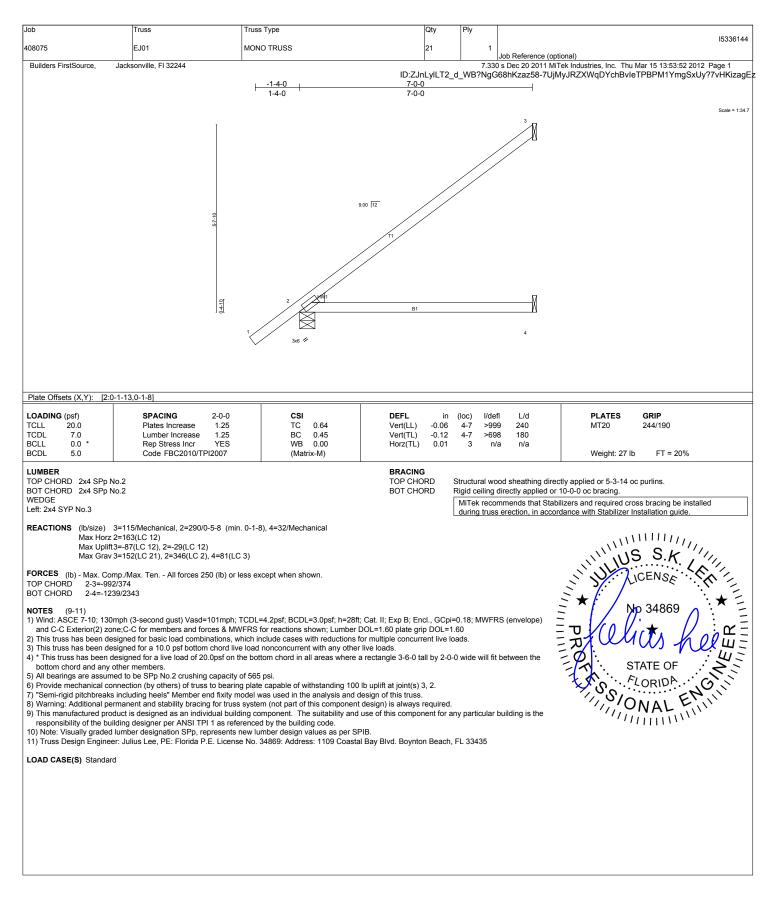
Job	Truss	Truss Type	Qty	Ply			
408075	CJ03	JACK	10	1			15336138
	Jacksonville, FI 32244				Job Reference (opti s Dec 20 2011 MiT		ar 15 13:53:49 2012 Page 1
builders FirstSource,	Jacksonvine, FI 32244	-1-4-0 1-4-0	ID:ZJnLyILT2 3-0-0 3-0-0				nZnz5Kq?FakWJ9hdkNzagF(
							Scale = 1:19.4
	612		9.00 112		3		
	2	2 1 2x4 =	Т1 В1		4		
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 5.0	SPACING 2-0-0 Plates Increase 1.25 Lumber Increase 1.25 Rep Stress Incr YES Code FBC2010/TPI2007	CSI TC 0.17 BC 0.06 WB 0.00 (Matrix)	DEFL in Vert(LL) -0.00 Vert(TL) -0.01 Horz(TL) 0.00	(loc) l/def 2-4 >999 2-4 >999 3 n/a	9 240 9 180		GRIP 244/190 FT = 20%
	Code 1 BC2010/1112007	(Wallix)	BRACING			Weight. 13 ib	11-20%
TOP CHORD 2x4 SPp N BOT CHORD 2x4 SPp N			TOP CHORD		od sheathing direc directly applied or 2	tly applied or 3-0-0 oc pi	urlins.
	0.2		bor chord	MiTek recor	mmends that Stabi	lizers and required cross	
Max Horz : Max Uplift: Max Grav 3 FORCES (lb) - Max. Con NOTES (9-11) 1) Wind: ASCE 7-10; 1307 gable end zone and C-(2) This truss has been des 3) This truss has been des 4) This truss has been des 3) This truss has been des 4) This tru	ed to be SPp No.2 crushing capacity of nnection (by others) of truss to bearing including heels" Member end fixity mor manent and stability bracing for truss duct is designed as an individual buildi lding designer per ANSI TPI 1 as refer lumber designation SPp, represents n rr: Julius Lee, PE: Florida P.E. License) ess except when shown. CDL=4.2psf; BCDL=3.0psf; h=28f nd forces & MWFRS for reactions ich include cases with reductions load nonconcurrent with any othe e bottom chord in all areas where if 565 psi. plate capable of withstanding 59 i del was used in the analysis and a system (not part of this componen ng component. The suitability and enced by the building code. ew lumber design values as per Si	shown; Lumber DOL=1.60 p for multiple concurrent live lo r live loads. a rectangle 3-6-0 tall by 2-0- lb uplift at joint 3 and 56 lb up design of this truss. I design js always required. Use of this component for a PIB.	=0.18; MWFR late grip DOL pads. 0 wide will fit olift at joint 2.	erection, in accord S (envelope) =1.60	ance with Stabilizer Ins tance with Stabilizer Ins the stabilit	11111 S.K. ENSE 34869

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANS/TP11 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/PI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

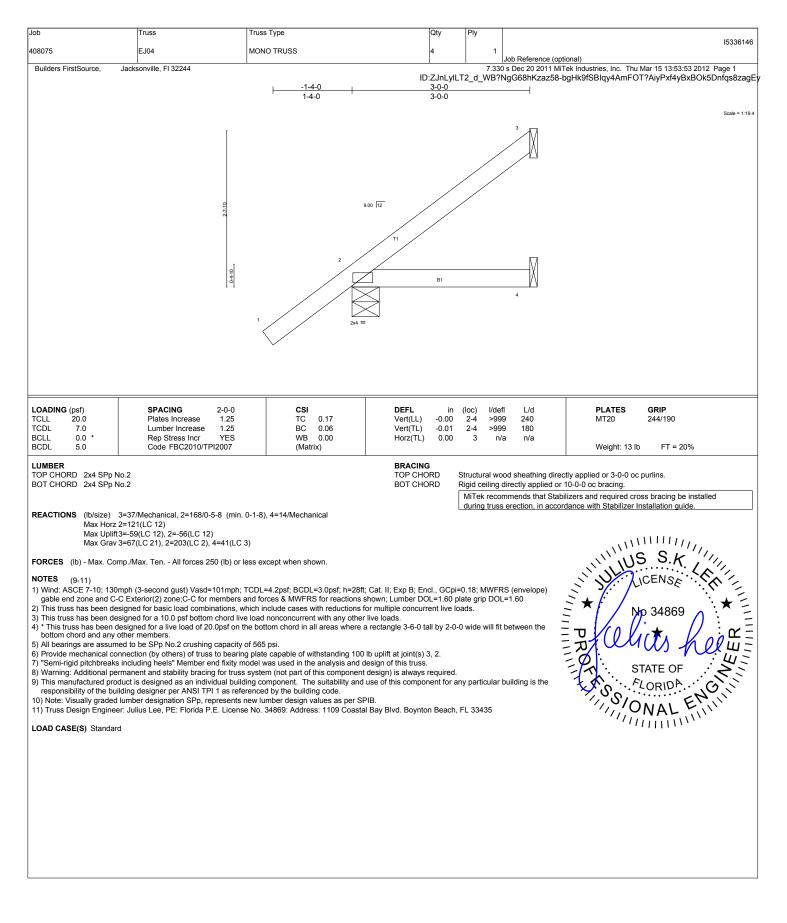

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPII Quality Criteria, DSB-89 and BCS11 Building Component Safely Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply		15336141
408075	CJ06	JACK	2	1	Job Reference (opti	
Builders FirstSource,	Jacksonville, FI 32244	I			s Dec 20 2011 MiT	ek Industries, Inc. Thu Mar 15 13:53:51 2012 Page 1
		F	1-3-1		G0011K28200-1H9	_kzQxnCiMxS6?Ma7Es_sKe8WAjUEomTAjpFzagF
			1-3-1			
			TT TT TT TT TT TT TT TT TT TT TT TT TT			Scale = 1:24.
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 5.0	SPACING2-0-0Plates Increase1.25Lumber Increase1.25Rep Stress IncrYESCode FBC2010/TPI2007	CSI TC 0.11 BC 0.08 WB 0.00 (Matrix)	Vert(LL) -0.00 Vert(TL) -0.00 Horz(TL) -0.03	(loc) l/defi 4 >999 4 >999 2 n/a	9 240 9 180	PLATES GRIP MT20 244/190 Weight: 9 lb FT = 20%
LUMBER TOP CHORD 2x4 SPp N BOT CHORD 2x4 SPp N WEBS 2x4 SPp N	0.2			Rigid ceiling o	directly applied or 1	tly applied or 5-0-0 oc purlins, except end verticals. 10-0-0 oc bracing. iizers and required cross bracing be installed
(Ib) - Max Horz Max Uplift Max Grav	rrings Mechanical. 4=29(LC 12) All uplift 100 lb or less at joint(s) 3, 4 All reactions 250 lb or less at joint(s np./Max. Ten All forces 250 (lb) or	3, 4, 1, 2	l	during truss	erection, in accord	same with Stabilizer Installation guide.
NOTES (11-13) 1) Wind: ASCE 7-10; 130, gable end zone and C- 2) This truss has been de: 3) This truss has been de: 4) * This truss has been de: 4) * This truss has been de: 5) All bearings are assum 6) Provide metal plate or 6 7) Provide mechanical con 8) "Semi-rigid pitchbreaks 9) Gap between inside of 10) Warning: Additional pr 11) This manufactured pro- responsibility of the bu 12) Note: Visually graded	mph (3-second gust) Vasd=101mph; C Exterior(2) zone;C-C for members signed for basic load combinations, v signed for a live load of 20.0psf on 1 ther members. ed to be SPp No.2 crushing capacity aquivalent at bearing(s) 1 to support 1 nnection (by others) of truss to bearin including heels" Member end fixity n top chord bearing and first diagonal ermanent and stability bracing for trus duct is designed as an individual bui uilding designer per ANSI TPI 1 as re lumber designation SPp, represents	TCDL=4.2psf; BCDL=3.0psf; h=28ft; C and forces & MWFRS for reactions sho hich include cases with reductions for load nonconcurrent with any other liv he bottom chord in all areas where a re of 565 psi. eaction shown. g plate capable of withstanding 100 lb odel was used in the analysis and des r vertical web shall not exceed 0.500in s system (not part of this component d ding component. The suitability and u	wn; Lumber DOL=1.60 pl multiple concurrent live lo e loads. uplift at joint(s) 3, 4, 1, 2. ign of this truss. esign) is always required. se of this component for a	ate grip DOL ads.) wide will fit any particular	=1.60	Np 34869 PR CULLS A COM STATE OF STATE OF SONAL ENNING
LOAD CASE(S) Standard	1					


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP11 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply		15336142
408075	CJ07	JACK	6	1	Job Reference (o	ptional)
Builders FirstSource,	Jacksonville, FI 32244		ID:ZJnLyILT			/liTek Industries, Inc. Thu Mar 15 13:53:51 2012 Page 1 .fH9_kzQxnCiMxS6?Ma7Es_sJ38XLjUEomTAjpFzagF
		-1-4- 1-4-		<u>1-0-0</u> 1-0-0		
						Scale = 1:11.5
	T				3	
				/		
					MA	
	2		/	/ /		
	ti ti		9.00 12			
	j			/	-MV	
	0-1-1		т1	B1		
	11	/			4	
		1	2x4 =			
OADING (psf)	SPACING 2-0-0	CSI		(loc) l/de		PLATES GRIP
TCLL 20.0 TCDL 7.0	Plates Increase 1.25 Lumber Increase 1.25	TC 0.14 BC 0.01	Vert(LL) -0.00 Vert(TL) -0.00	2 >99 2 >99		MT20 244/190
BCLL 0.0 * BCDL 5.0	Rep Stress Incr YES Code FBC2010/TPI2007	WB 0.00 (Matrix)	Horz(TL) 0.00	3 n/	/a n/a	Weight: 6 lb FT = 20%
LUMBER		()	BRACING			
TOP CHORD 2x4 SPp N BOT CHORD 2x4 SPp N			TOP CHORD			ectly applied or 1-0-0 oc purlins. or 10-0-0 oc bracing.
	10.2			MiTek reco	mmends that Sta	abilizers and required cross bracing be installed
	2=138/0-3-8 (min. 0-1-8), 4=5/Mechan	ical, 3=-27/Mechanical	l	during truss	s erection, in acc	ordance with Stabilizer Installation guide.
	2=64(LC 12) 2=-79(LC 12), 4=-6(LC 8), 3=-33(LC 2)					Sidence with Stabilizer Installation guide.
Max Grav	2=168(LC 2), 4=14(LC 3), 3=23(LC 16))				
FORCES (Ib) - Max. Cor	mp./Max. Ten All forces 250 (lb) or lea	ss except when shown.				US S.K.
NOTES (9-11)	mph (3-second gust) Vasd=101mph; T	CDI =4 2pcf: BCDI =3 0pcf: b=29	iff: Cat. II: Exp. B: Epcl. CCni-	-0 19. MIM/EE	26 (onvolono)	LICENSE
gable end zone and C-	C Exterior(2) zone; porch left and right				nber DOL=1.60	₹★
	signed for basic load combinations, wh			ads.		Ξ (
 This truss has been d 	signed for a 10.0 psf bottom chord live lesigned for a live load of 20.0psf on the	load nonconcurrent with any othe e bottom chord in all areas where	er live loads. a rectangle 3-6-0 tall by 2-0-	0 wide will fit	t between the	
	ed to be SPp No.2 crushing capacity of					STATE OF
	nnection (by others) of truss to bearing including heels" Member end fixity mo					STATE OF
B) Warning: Additional pe	rmanent and stability bracing for truss s duct is designed as an individual buildir	system (not part of this componer	nt design) is always required.	ny particular	building is the	LORIDA G
responsibility of the bui	liding designer per ANSI TPI 1 as refere lumber designation SPp, represents ne	enced by the building code.		ny paraoalar	building to the	SONAL ENT
	er: Julius Lee, PE: Florida P.E. License			FL 33435		
OAD CASE(S) Standar	d					•••

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component Safely Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

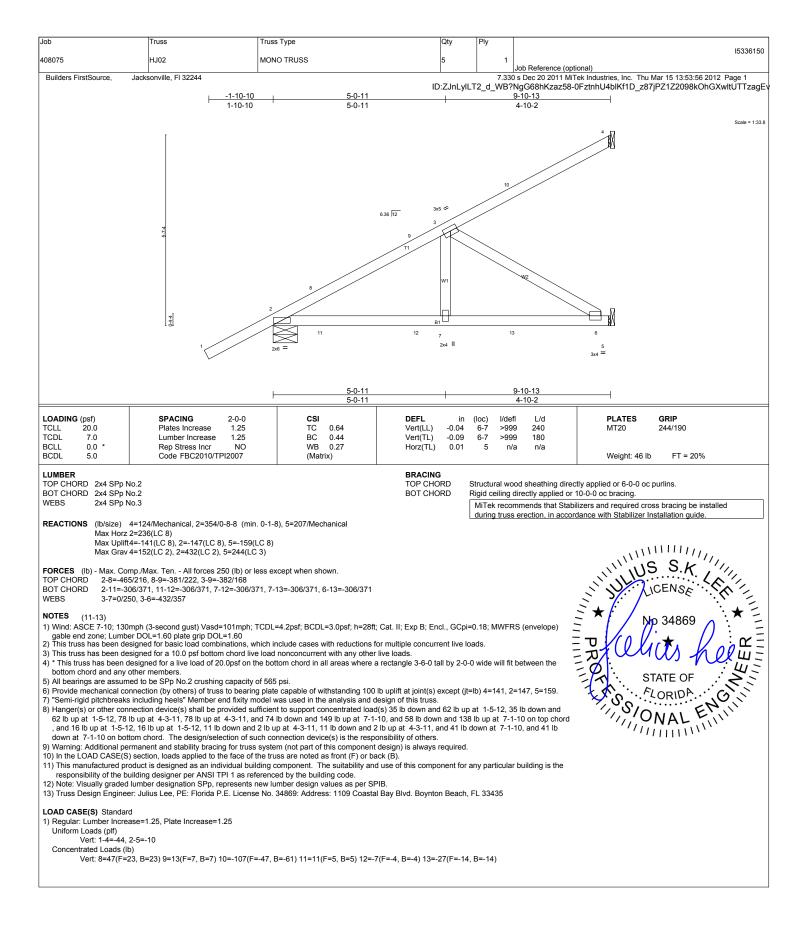
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/PI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	
408075	EJ02	MONO TRUSS	1	1	1533614
Builders FirstSource,	Jacksonville, FI 32244				Job Reference (optional) 30 s Dec 20 2011 MiTek Industries, Inc. Thu Mar 15 13:53:53 2012 Page 1
		 	5-2-12	T2_d_WB?N	NgG68hKzaz58-bgHk9fSBlqy4AmFOT?AiyPxa1y6MBOk5Dnfqs8za
			5-2-12		Scale = 1:3
		T		2 	
				Ű	89 1
			9.00 12		
			9.00 112		
			т		
		2-10			
		نة 3x5 II			20 9 9
		द द			
			B1	N	
		₅ _{4x5} =			
		4		3	
OADING (psf)	SPACING 2-0-0	CSI	DEFL in	(loc) l/de	efi L/d PLATES GRIP
ICLL 20.0 ICDL 7.0	Plates Increase 1.25 Lumber Increase 1.25	TC 0.50 BC 0.42	Vert(LL) 0.08 Vert(TL) -0.09	3-4 >77 3-4 >66	78 240 MT20 244/190
BCLL 0.0 * BCDL 5.0	Rep Stress Incr YES Code FBC2010/TPI2007	WB 0.00 (Matrix)	Horz(TL) 0.16		n/a n/a Weight: 20 lb FT = 20%
LUMBER			BRACING		
TOP CHORD 2x4 SPp N BOT CHORD 2x4 SPp N			TOP CHORD	Structural we verticals.	rood sheathing directly applied or 5-2-12 oc purlins, except end
WEBS 2x4 SPp N	10.2		BOT CHORD		g directly applied or 10-0-0 oc bracing. commends that Stabilizers and required cross bracing be installed
REACTIONS All bea	arings Mechanical.				ss erection, in accordance with Stabilizer Installation guide.
	All uplift 100 lb or less at joint(s) 3,				TRS (envelope)
	All reactions 250 lb or less at joint(,			US S.K
	mp./Max. Ten All forces 250 (lb) o	r less except when shown.			ICENSE
		; TCDL=4.2psf; BCDL=3.0psf; h=28f			RS (envelope)
2) This truss has been dea	signed for basic load combinations,	s and forces & MWFRS for reactions which include cases with reductions	for multiple concurrent live I		ar building is the
4) * This truss has been d	lesigned for a live load of 20.0psf or	ive load nonconcurrent with any othe the bottom chord in all areas where	r live loads. a rectangle 3-6-0 tall by 2-0	-0 wide will fi	
	ed to be SPp No.2 crushing capacit				
7) Provide mechanical cor		ing plate capable of withstanding 100		ept (jt=lb) 2=1	135. STATE OF
9) Gap between inside of	top chord bearing and first diagonal	model was used in the analysis and or vertical web shall not exceed 0.50)0in.	-	CORIDA
11) This manufactured pro		uss system (not part of this compone uilding component. The suitability an			ar building is the
12) Note: Visually graded	lumber designation SPp, represent	s new lumber design values as per S nse No. 34869: Address: 1109 Coasta		EL 22425	
LOAD CASE(S) Standard		ISE NO. 34669. Address. 1109 Coast	al bay bivu. boynton beach	, FL 33435	
					March

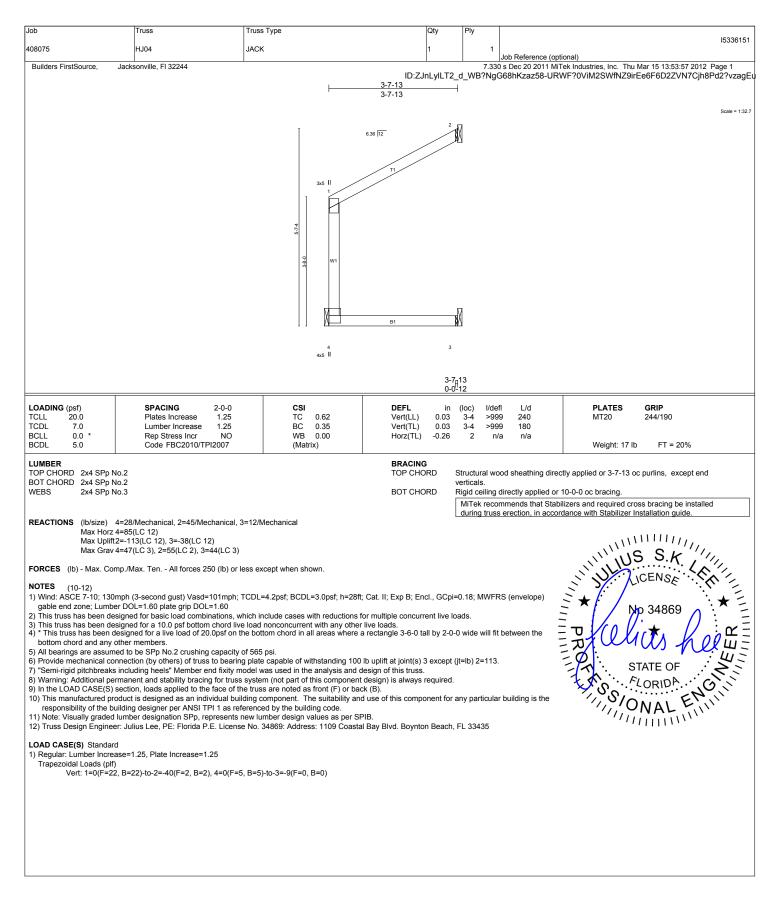
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANS/IPTI Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

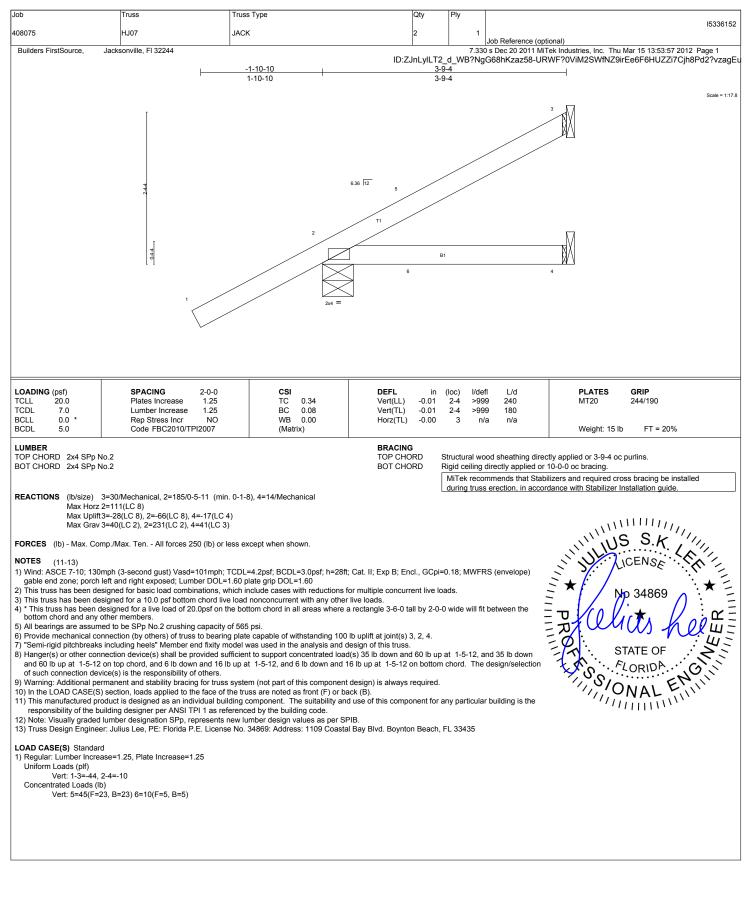
Job	Truss	Truss Type	Qty	Ply			
408075	EJ05	MONO TRUSS	19	1		1533	36147
Builders FirstSource,	Jacksonville, Fl 32244			7.33	Job Reference (c 0 s Dec 20 2011 M	optional) MiTek Industries, Inc. Thu Mar 15 13:53:54 2012 Page 1	
		-1-4-0	ID:ZJnLyILT2_ 2-8-0	d_WB?N	gG68hKzaz58-4	4sr6M?Sp374xovqa1jhxUcUq1LYBwrzFSRONPa	izagE
		1-4-0	2-8-0		1		
						Scale	e = 1:18.1
	I				3		
				/			
			/	/ /			
	1	9	.00 12				
	27						
			т				
	T	2			Μ		
	04-10		в1		X		
	1-1		$\overline{\langle}$		4		
		1 2x4	=				
		~					
LOADING (psf)	SPACING 2-0-0	CSI	DEFL in (loc) l/de	efl L/d	PLATES GRIP	
TCLL 20.0	Plates Increase 1.25	TC 0.16	Vert(LL) 0.01	2-4 >99	99 240	MT20 244/190	
TCDL 7.0 BCLL 0.0 *	Lumber Increase 1.25 Rep Stress Incr YES	BC 0.06 WB 0.00	Vert(TL) -0.00 Horz(TL) 0.00	2-4 >99 3 n	99 180 /a n/a		
BCDL 5.0	Code FBC2010/TPI2007	(Matrix)				Weight: 12 lb FT = 20%	
LUMBER TOP CHORD 2x4 SPp N	lo.2		BRACING TOP CHORD St	ructural we	ood sheathing dir	rectly applied or 2-8-0 oc purlins.	
BOT CHORD 2x4 SPp N			BOT CHORD R	gid ceiling	directly applied of	or 10-0-0 oc bracing.	
					e erection in acc	abilizers and required cross bracing be installed cordance with Stabilizer Installation guide.	
	3=32/Mechanical, 2=157/0-3-8 (min. 2=111(LC 12)	0-1-8), 4=12/Mechanical				Source with Statistics in Statistics of Statistics in Statistics of Statistics in Statistics of Stat	
	3=-50(LC 12), 2=-56(LC 12), 4=-15(L 3=59(LC 21), 2=190(LC 2), 4=37(LC					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	np./Max. Ten All forces 250 (lb) or					IN IS S.K	
	np.//wax. Ten Air loices 200 (ib) of	ess except when shown.				LI DICENS	
1) Wind: ASCE 7-10; 130	mph (3-second gust) Vasd=101mph;				RS (envelope)	S. S. LICENSE	/
gable end zone and C- plate grip DOL=1.60	C Exterior(2) zone; porch left and rig	nt exposed;C-C for members and for	ces & MWFRS for reactions s	hown; Lun	nber DOL=1.60	$\Xi \star [$ No 34869 $\therefore \star$	1
	signed for basic load combinations, v signed for a 10.0 psf bottom chord liv			ds.			Ē
4) * This truss has been d bottom chord and any of	esigned for a live load of 20.0psf on	he bottom chord in all areas where a	a rectangle 3-6-0 tall by 2-0-0	wide will fi	t between the		13
5) All bearings are assum	ed to be SPp No.2 crushing capacity nnection (by others) of truss to bearing		Ib unlift at joint(s) 3 2 4			STATE OF STATE OF STATE OF STORIDA. STORIDA. STORIDA.	13
7) "Semi-rigid pitchbreaks	including heels" Member end fixity n	nodel was used in the analysis and d	esign of this truss.			STATE OF	2
9) This manufactured proc	rmanent and stability bracing for trust duct is designed as an individual build	ling component. The suitability and		particular	building is the	S. ALORIDA G	
	Iding designer per ANSI TPI 1 as refe lumber designation SPp, represents		lΒ.			ONAL ENN	
	er: Julius Lee, PE: Florida P.E. Licens			L 33435			
LOAD CASE(S) Standard	b						

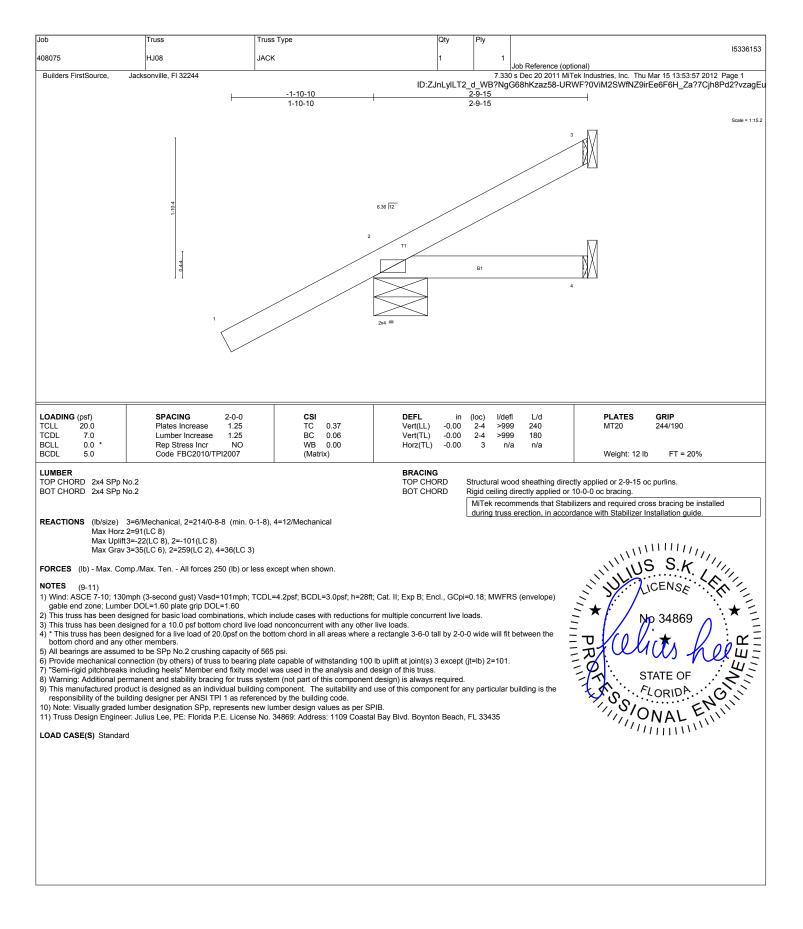

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TP1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

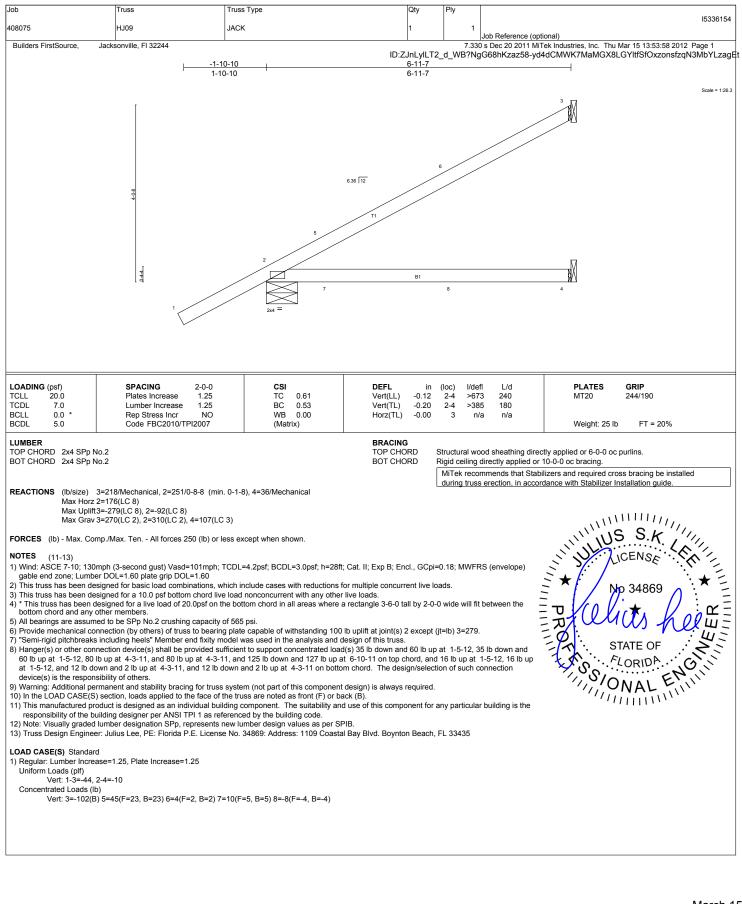
Job	Truss	Truss Type	Qty	Ply		
408075	EJ06	MONO TRUSS	1	1		1533614
Builders FirstSource,	Jacksonville, Fl 32244					Tek Industries, Inc. Thu Mar 15 13:53:54 2012 Page 1
		-1-4-0	2-8-0	_d_WB?N	gG68hKzaz58-4s	r6M?Sp374xovqa1jhxUcUq1LYMwrzFSRONPaza
		1-4-0	2-8-0		I	
					3	Scale = 1:1
	Ī					
				/		
				/ /		
			_			
	2.4-10		9.00 12			
			11			
		2				
	04-10		В1		X	
	11				4	
			\bowtie			
			x4 =			
		\bigvee				
						1
L OADING (psf) TCLL 20.0	SPACING 2-0-0 Plates Increase 1.25	CSI TC 0.16	DEFL in Vert(LL) -0.00	(loc) l/de 2-4 >99		PLATES GRIP MT20 244/190
TCDL 7.0	Lumber Increase 1.25	BC 0.05	Vert(TL) -0.00	2-4 >99	99 180	101120 244/130
BCLL 0.0 * BCDL 5.0	Rep Stress Incr YES Code FBC2010/TPI2007	WB 0.00 (Matrix)	Horz(TL) 0.00	3 n	ı/a n/a	Weight: 12 lb FT = 20%
			BRACING	21	and also all to a diver	
TOP CHORD 2x4 SPp N BOT CHORD 2x4 SPp N					ood sheathing direc directly applied or	ctly applied or 2-8-0 oc purlins. 10-0-0 oc bracing.
					e erection in accor	ilizers and required cross bracing be installed rdance with Stabilizer Installation guide.
	3=32/Mechanical, 2=157/0-3-8 (min. 2=111(LC 12)	0-1-8), 4=12/Mechanical		•		
Max Uplift	3=-50(LC 12), 2=-56(LC 12) 3=59(LC 21), 2=190(LC 2), 4=37(LC	3)				Np 34869
	mp./Max. Ten All forces 250 (lb) or I					IN IS S.K
NOTES (9-11)	······································					NUL ZICENSA
1) Wind: ASCE 7-10; 130	mph (3-second gust) Vasd=101mph; C Exterior(2) zone;C-C for members				RS (envelope)	St. Liozuse
This truss has been de	signed for basic load combinations, w signed for a 10.0 psf bottom chord liv	hich include cases with reductions	for multiple concurrent live lo			Ξ★/ Np 34869 Λ ★ Ξ
	lesigned for a live load of 20.0psf on t) wide will fi		
5) All bearings are assum	ed to be SPp No.2 crushing capacity					Enternas Kolt
 Semi-rigid pitchbreaks 	nnection (by others) of truss to bearin including heels" Member end fixity m	nodel was used in the analysis and	design of this truss.			STATE OF
9) This manufactured pro	rmanent and stability bracing for truss duct is designed as an individual build	ling component. The suitability and		ny particular	building is the	FLORIDA.
	ilding designer per ANSI TPI 1 as refe lumber designation SPp, represents		SPIB.			SOUTH EN
	er: Julius Lee, PE: Florida P.E. Licens	e No. 34869: Address: 1109 Coast	tal Bay Blvd. Boynton Beach,	FL 33435		RICHAR HOLE
LOAD CASE(S) Standar	d					

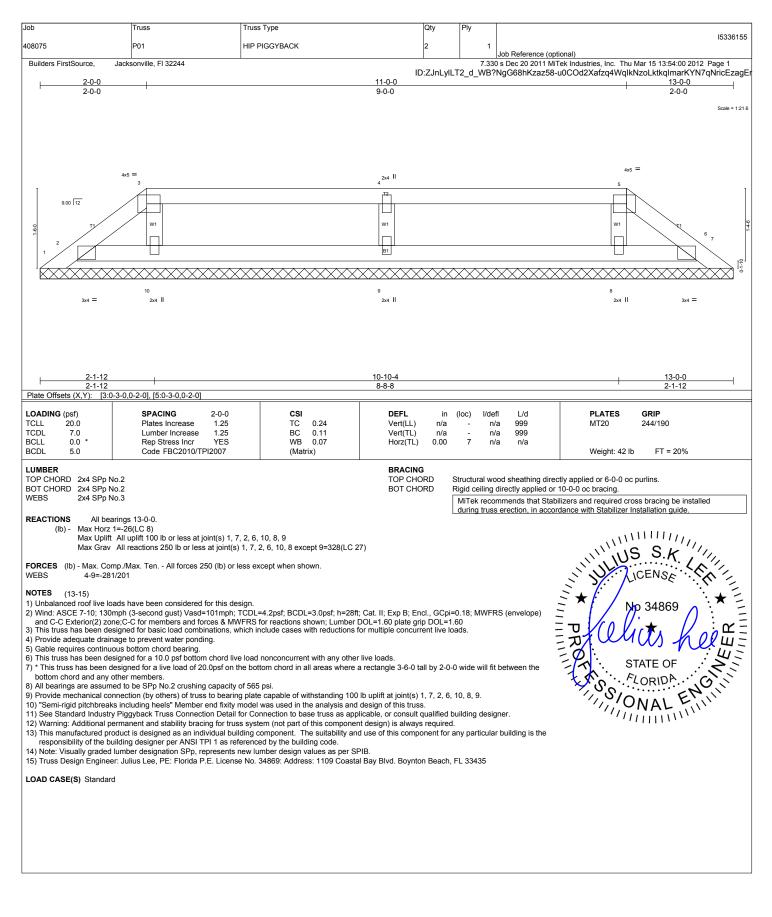

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP11 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

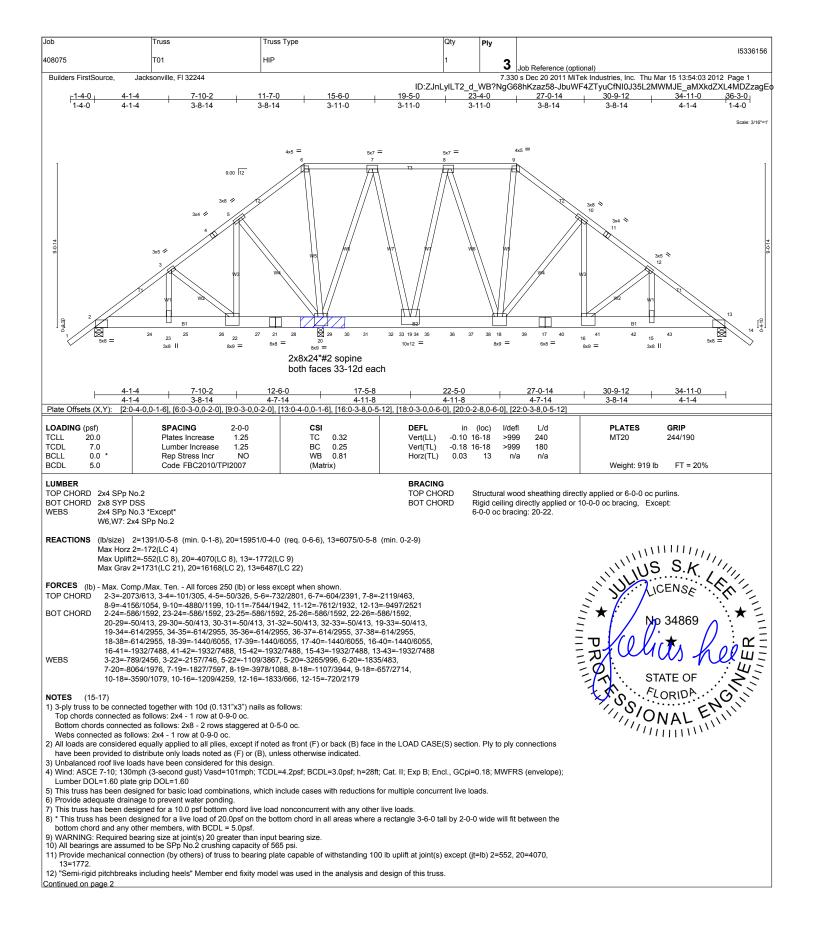
Job	Truss	Truss Type	Qty	Ply		
408075	EJ07	MONO TRUSS	1	1		15336149
Builders FirstSource,	Jacksonville, FI 32244				b Reference (optional) Dec 20 2011 MiTek In	dustries, Inc. Thu Mar 15 13:53:55 2012 Page 1
			ID:ZJnLyILT2_ 4-11-0			FSqRCoP3PmbQCA1q1w0lrBfIDOh58xx1zagI
			4-11-0			
						Scale = 1:24
		Ī		2	N	
					N ,	
			/			
			_ //			
			9.00 12			
		4				
			Т		8-1-	
					r	
			/			
				N		
		0.410	B1		N I	
		\bowtie		3		
		2x4 =				
LOADING (psf)	SPACING 2-0-1	0 CSI	DEFL in	(loo) l/dofl	L/d	PLATES GRIP
TCLL 20.0	Plates Increase 1.2	5 TC 0.47	Vert(LL) -0.03	(loc) I/defl 1-3 >999	240	MT20 244/190
TCDL 7.0 BCLL 0.0 *	Lumber Increase 1.2 Rep Stress Incr YES	S WB 0.00	Vert(TL) -0.05 Horz(TL) -0.00	1-3 >999 2 n/a	180 n/a	
BCDL 5.0	Code FBC2010/TPI2007	(Matrix)				Weight: 17 lb FT = 20%
LUMBER TOP CHORD 2x4 SPp N	10.2		BRACING TOP CHORD	Structural wood	sheathing directly an	plied or 4-11-0 oc purlins.
BOT CHORD 2x4 SPp N				Rigid ceiling dire	ectly applied or 10-0-	0 oc bracing.
					rection, in accordance	and required cross bracing be installed with Stabilizer Installation guide.
	1=125/0-5-8 (min. 0-1-8), 2=102/ 1=143(LC 12)	Mechanical, 3=23/Mechanical				
	2=-127(LC 12) 1=148(LC 2), 2=141(LC 21), 3=69	∂(LC 3)				★ No 34869
	np./Max. Ten All forces 250 (lb)					IN IS S.K
NOTES (9-11)		or lead except when brown.				LUCENSS CENSS
1) Wind: ASCE 7-10; 130		ph; TCDL=4.2psf; BCDL=3.0psf; h=28			(envelope)	J. VIOLINSE
2) This truss has been de	signed for basic load combination	ers and forces & MWFRS for reactions is, which include cases with reductions	s for multiple concurrent live lo	blate grip DOL=1 bads.	1.60	★ / Np 34869
4) * This truss has been d	lesigned for a live load of 20.0psf	d live load nonconcurrent with any othe on the bottom chord in all areas where		-0 wide will fit be	etween the	
bottom chord and any of 5) All bearings are assum	other members. ed to be SPp No.2 crushing capa	city of 565 psi.	0 /		- 1	
6) Provide mechanical con	nnection (by others) of truss to be	aring plate capable of withstanding 10 ty model was used in the analysis and		=lb) 2=127.	= (
8) Warning: Additional per	rmanent and stability bracing for t	russ system (not part of this component	ent design) is always required.			TY STATE OF
responsibility of the bui	Iding designer per ANSI TPI 1 as		•	iny particular bu	liding is the	S C ALORIDA
		nts new lumber design values as per \$ ense No. 34869: Address: 1109 Coas		FL 33435		ONALENN
	b					
-OAD CASE(S) Standard						No 34869
LOAD CASE(S) Standard						
LOAD CASE(S) Standar						
LOAD CASE(S) Standar						
LOAD CASE(S) Standar						
LOAD CASE(S) Standar						
LOAD CASE(S) Standar						
LOAD CASE(S) Standard						
LOAD CASE(S) Standar						
.OAD CASE(S) Standar						


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP11 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANS/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANS/IPTI Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer. For designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component Safely Information available from Trus Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/PI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component Safely Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component Safely Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component** Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	
					15336156
408075	T01	HIP	1	3	Job Reference (optional)
Builders FirstSource, Jac	ksonville, FI 32244				Dis Dec 20 2011 MiTek Industries, Inc. Thu Mar 15 13:54:03 2012 Page 2

NOTES (15-17)

ID:ZJnLyILT2_d_WB?NgG68hKzaz58-JbuWF4ZTyuCfNI0J35L2MWMJE_aMXkdZXL4MDZzagEo

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1578 lb down and 698 lb up at 3-0-12, 969 lb down and 152 lb up at 5-0-12, 969 lb down and 165 lb up at 7-0-12, 807 lb down and 411 lb up at 7-0-12, 994 lb down and 206 lb up at 9-0-12, 349 lb down and 115 lb up at 9-0-12, 1049 lb down and 208 lb up at 11-0-12, 349 lb down and 160 lb up at 11-0-12, 1072 lb down and 186 lb up at 13-0-12, 341 lb down and 167 lb up at 13-0-12, 1096 lb down and 136 lb up at 15-0-12, 341 lb down and 167 lb up at 13-0-12, 1096 lb down and 136 lb up at 17-0-12, 341 lb down and 167 lb up at 17-0-12, 341 lb down and 167 lb up at 17-0-12, 341 lb down and 167 lb up at 17-0-12, 341 lb down and 167 lb up at 17-0-12, 341 lb down and 167 lb up at 17-0-12, 341 lb down and 167 lb up at 17-0-12, 341 lb down and 167 lb up at 17-0-12, 341 lb down and 167 lb up at 17-0-12, 341 lb down and 167 lb up at 17-0-12, 341 lb down and 167 lb up at 17-0-12, 341 lb down and 167 lb up at 17-0-12, 341 lb down and 167 lb up at 17-0-4, 341 lb down and 167 lb up at 17-0-4, 341 lb down and 167 lb up at 17-0-4, 341 lb down and 167 lb up at 17-10-4, 1049 lb down and 208 lb up at 23-10-4, 349 lb down and 168 lb up at 23-10-4, 349 lb down and 168 lb up at 23-10-4, 349 lb down and 208 lb up at 200 lb up at 23-10-4, 349 lb down and 208 lb up at 200 lb up at 23-10-4, 341 lb down and 167 lb up at 23-10-4, 349 lb down and 208 lb up at 200 lb up at 23-10-4, 349 lb down and 208 lb up at 200 lb up at 23-10-4, 349 lb down and 208 lb up at 200 lb up at 23-10-4, 349 lb down and 167 lb up at 23-10-4, 349 lb down and 208 lb up at 200 lb up at 23-10-4, 349 lb down and 167 lb up at 23-10-4, 349 lb down and 208 lb up at 23-10-4, 349 lb down and 208 lb up at 23-10-4, 349 lb down and 208 lb up at 23-10-4, 349 lb down and 208 lb up at 23-10-4, 349 lb down and 208 lb up at 23-10-4, 349 lb down and 208 lb up at 23-10-4, 349 lb down and 208 lb up at 23-10-4, 349 lb down and 208 lb up at 23-10-4, 349 lb down and 208 lb up at 23-10-4, 349

up at 25-10-4, 349 lb down and 115 lb up at 25-10-4, 969 lb down and 165 lb up at 27-10-4, 807 lb down and 411 lb up at 27-10-4, and 969 lb down and 152 lb up at 29-10-4, and 1748 lb down and 744 lb up at 31-10-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

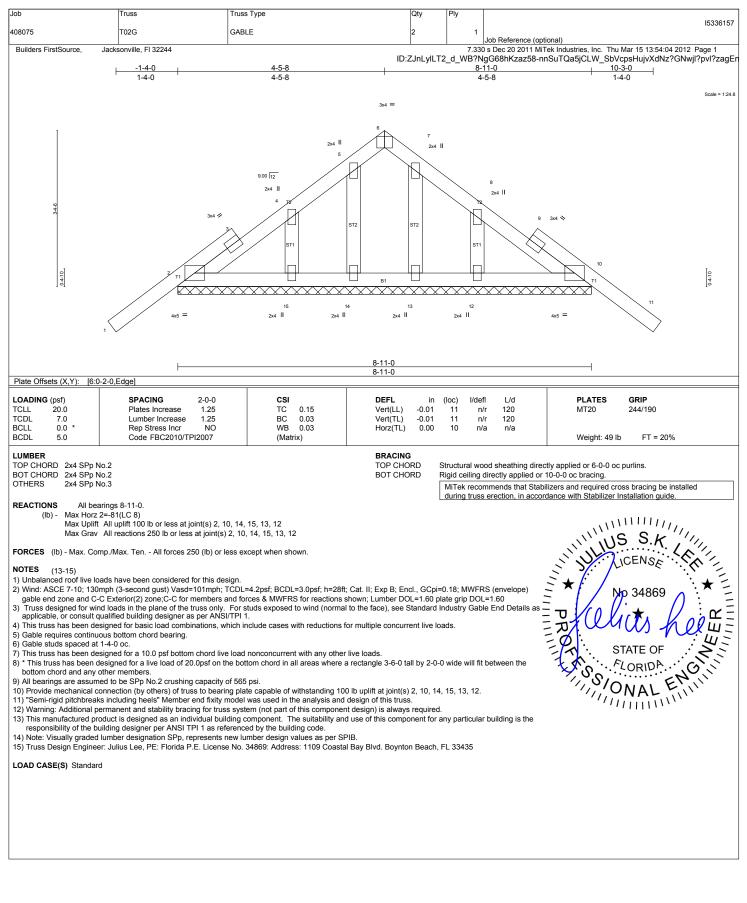
14) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

15) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

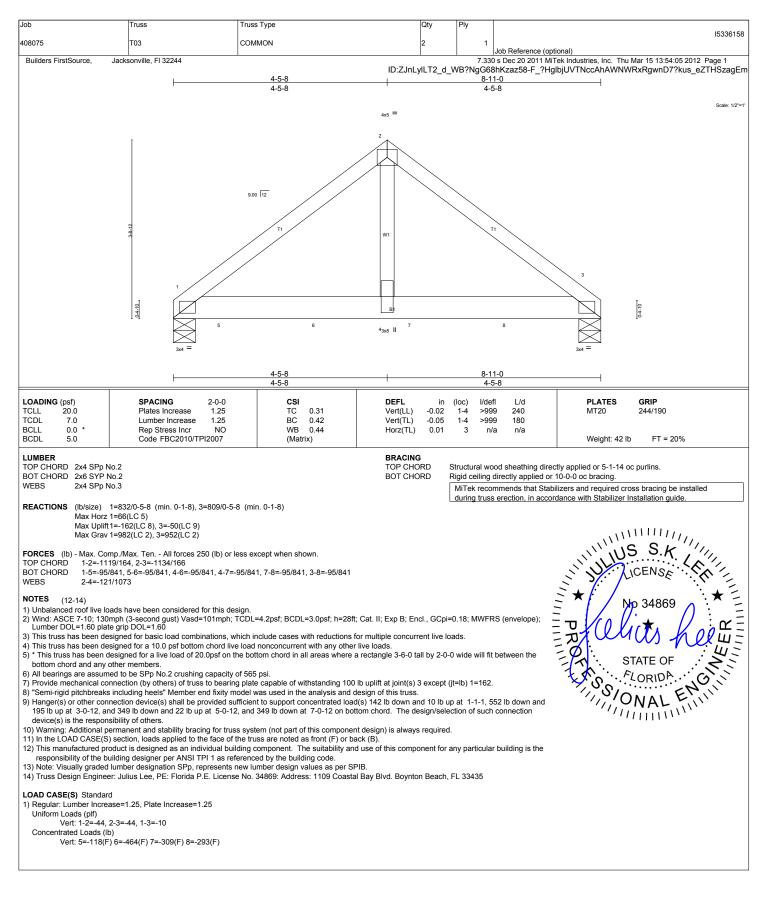
16) Note: Visually graded lumber designation SPp, represents new lumber design values as per SPIB.

17) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

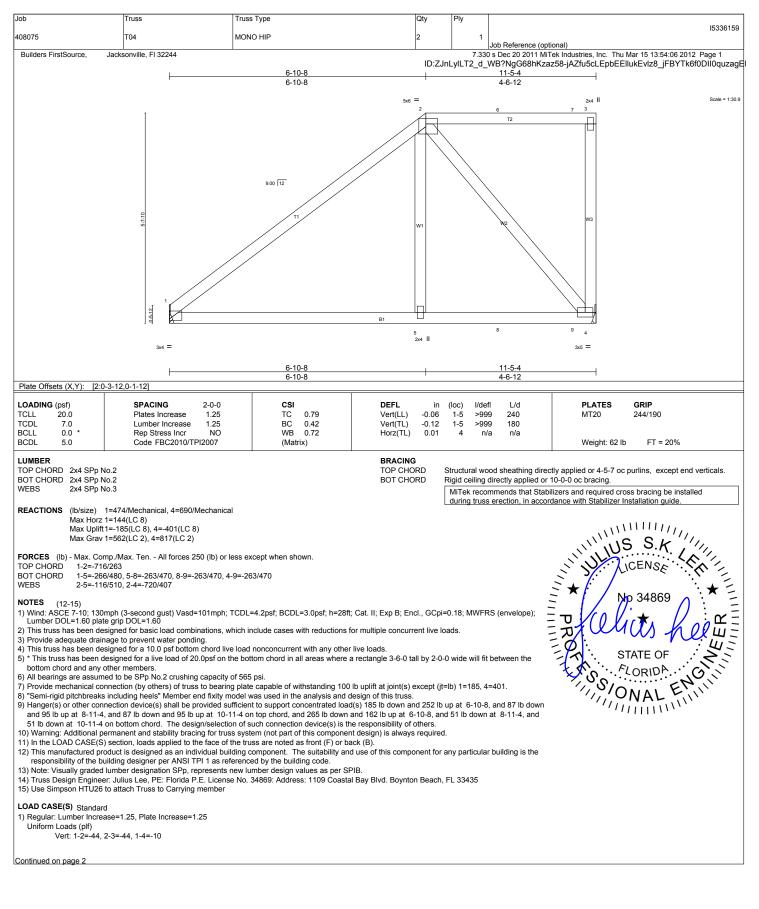
LOAD CASE(S) Standard


1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-6=-44, 6-9=-44, 9-14=-44, 2-30=-10, 30-32=-40, 32-35=-10, 35-37=-40, 13-37=-10

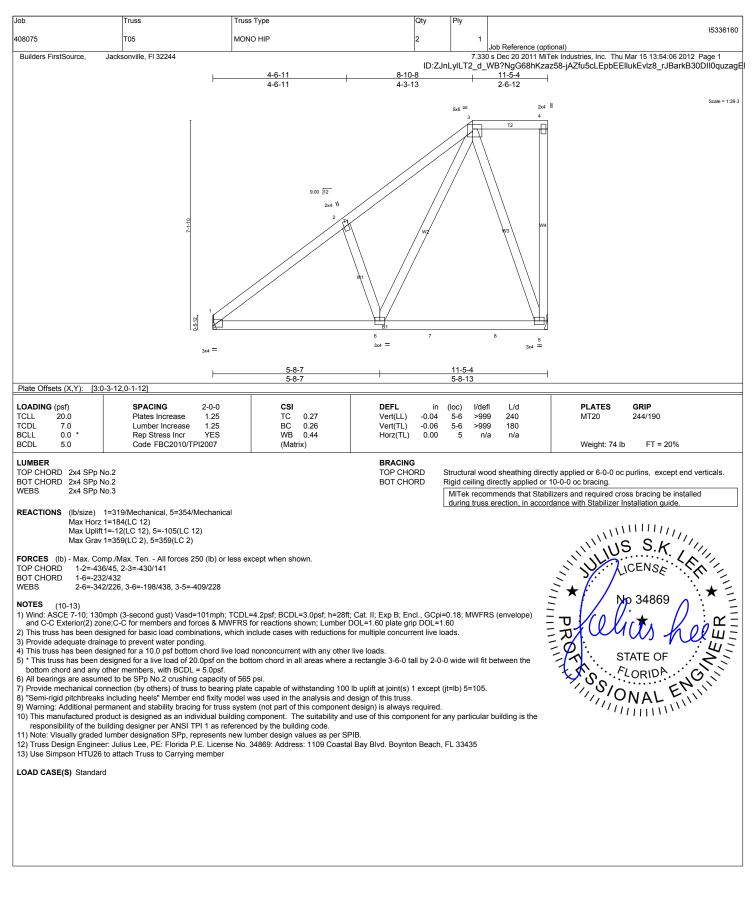

Concentrated Loads (lb)

Vert: 24=-1329(F) 25=-860(F) 26=-1569(F=-889, B=-680) 27=-1337(F=-994, B=-344) 28=-1342(F=-1049, B=-293) 29=-1358(F=-1072, B=-287) 31=-1382(F=-1096, B=-287) 33=-1382(F=-1096, B=-287) 34=-1382(F=-1096, B=-287) 36=-1382(F=-1096, B=-287) 38=-1358(F=-1072, B=-287) 39=-1342(F=-1049, B=-293) 40=-1337(F=-994, B=-344) 41=-1569(F=-889, B=-680) 42=-860(F) 43=-1472(F)

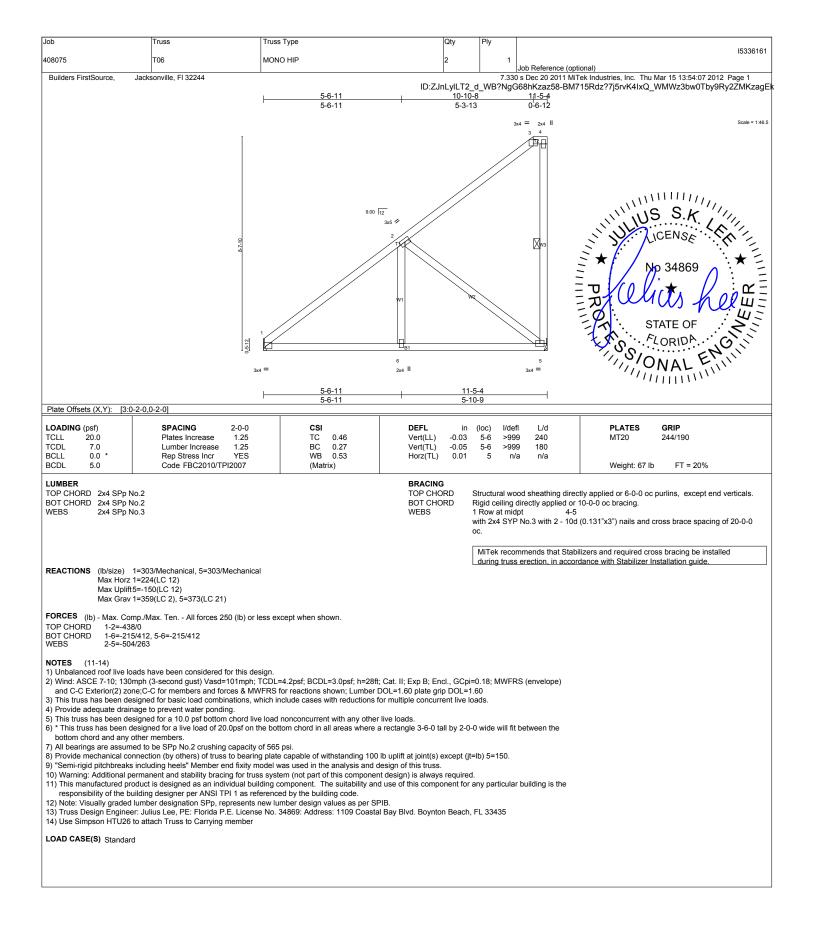

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI1 Guality Criteria, DSB-89 and BCS11 Building Component Safely Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI Quality Criteria, DSB-89 and BCS11 Building Component Safely Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

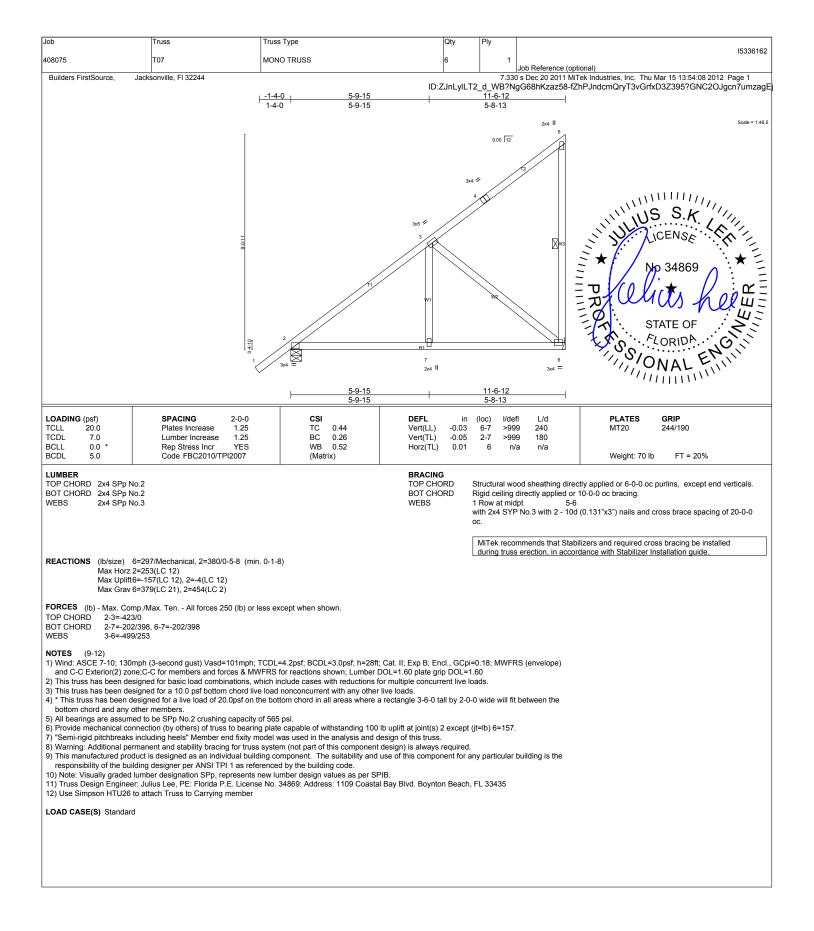
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPII Quality Criteria, DSB-89 and BCS11 Building Component Safely Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

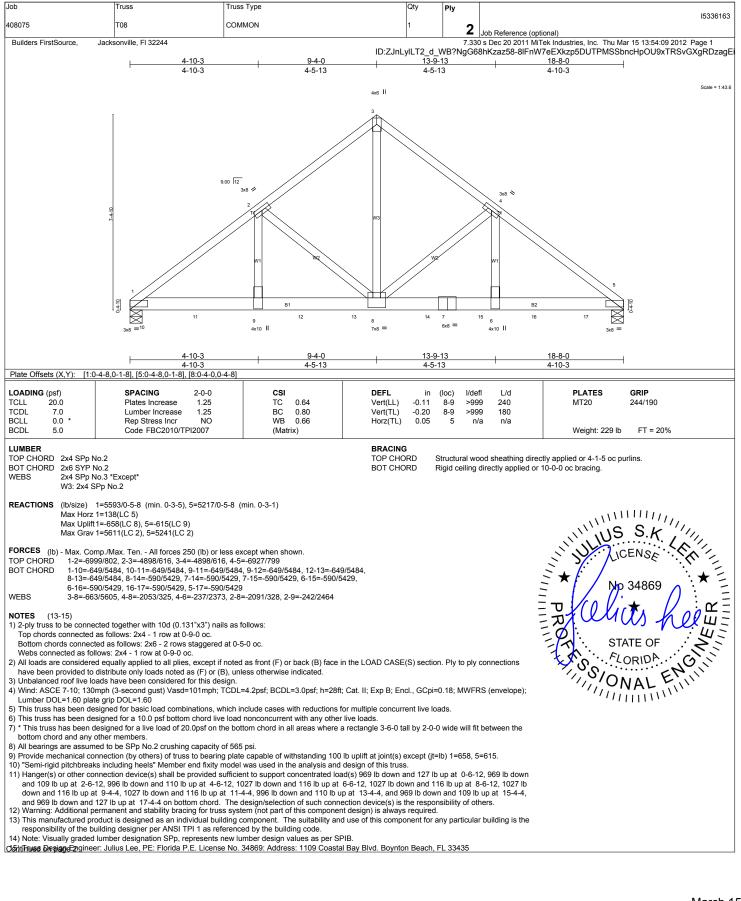

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability dofting constructions is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPII Quality Criteria, DSB-89 and BCS11 Building Component Safely Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

-	Job	Truss	Truss Type	Qty	Ply		Ĺ	
						15336159	Ĺ	
ŀ	408075	T04	MONO HIP	2	1		Ĺ	
						Job Reference (optional)	Ĺ	
Γ	Builders FirstSource, Jacksonville, Fl 32244 7.330 s Dec 20 2011 MiTek Industries, Inc. Thu Mar 15 13:54:06 2012 Page 2							
	ID:ZJnLylLT2_d_WB?NgG68hKzaz58-jAZfu5cLEpbEEllukEvIz8_jFBYTk6f0DIl0quzagEl							


LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 5=-219(F) 2=-151(F) 6=-71(F) 7=-71(F) 8=-22(F) 9=-22(F)

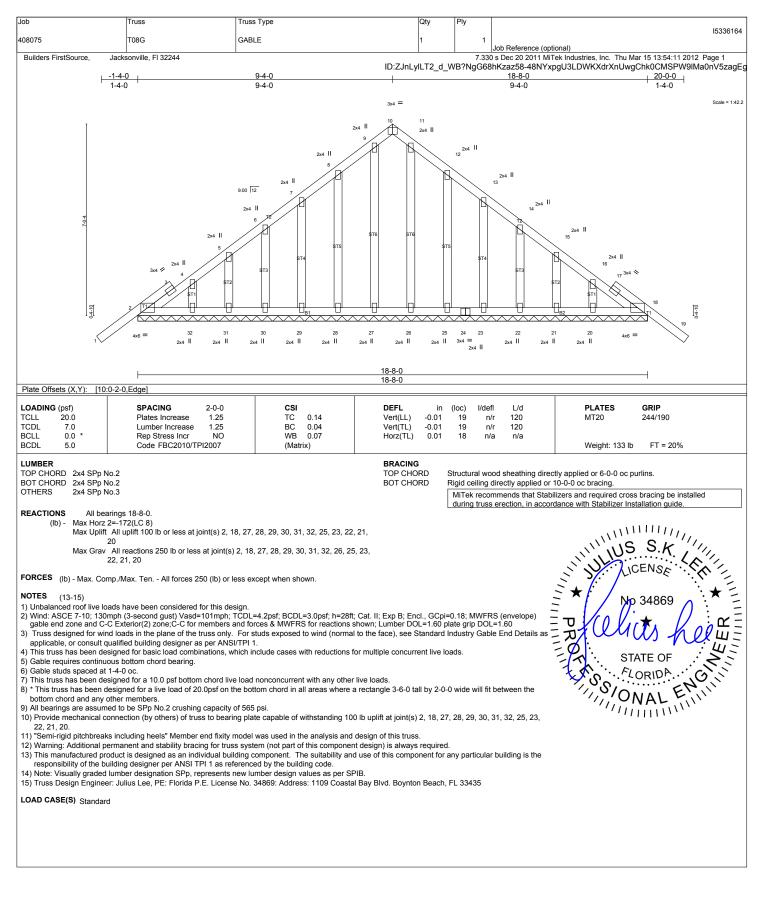

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI1 Quality Criterio, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANS/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

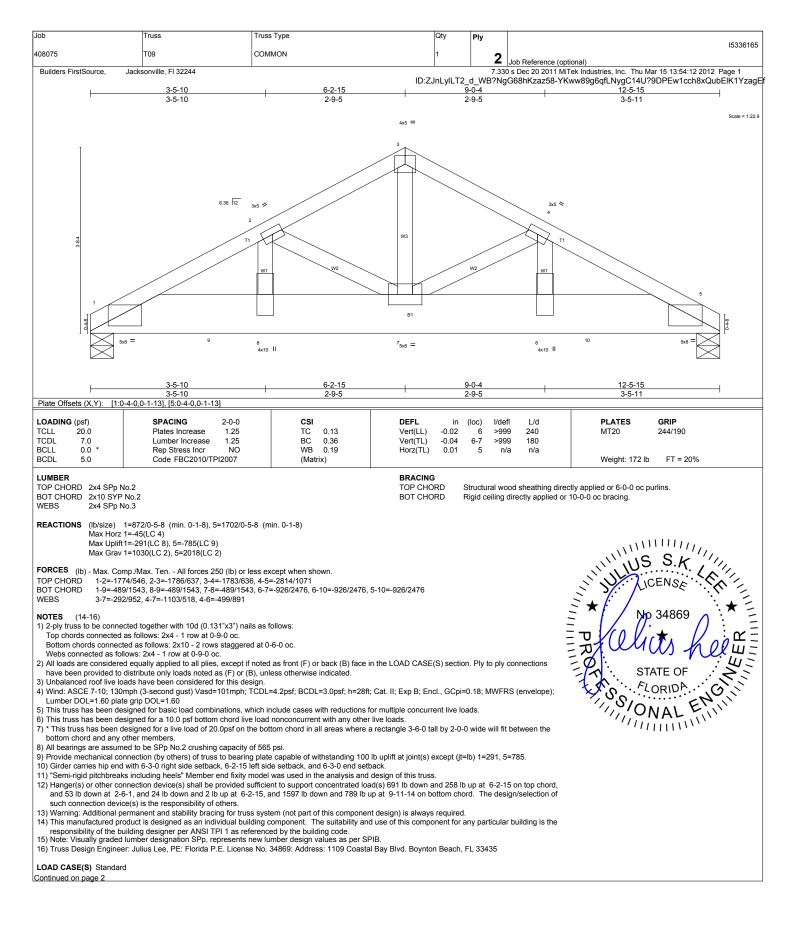
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer. For general guidance regarding is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANS/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer. For anot truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI Quality Criteria**, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


-	Job	Truss	Truss Type	Qty	Ply		
	408075	T08	COMMON	1	-	15336163	
ľ	100075	108		1	2	Job Reference (optional)	
ſ	Builders FirstSource, Jacksonville, Fl 32244			7.330 s Dec 20 2011 MiTek Industries, Inc. Thu Mar 15 13:54:09 2012 Page 2			
		ID:ZJnl	ID:ZJnLyILT2_d_WB?NgG68hKzaz58-8IFnW7eEXkzp5DUTPMSSbncHpOU9xTRSvGXgRDzagEi				

LOAD CASE(S) Standard

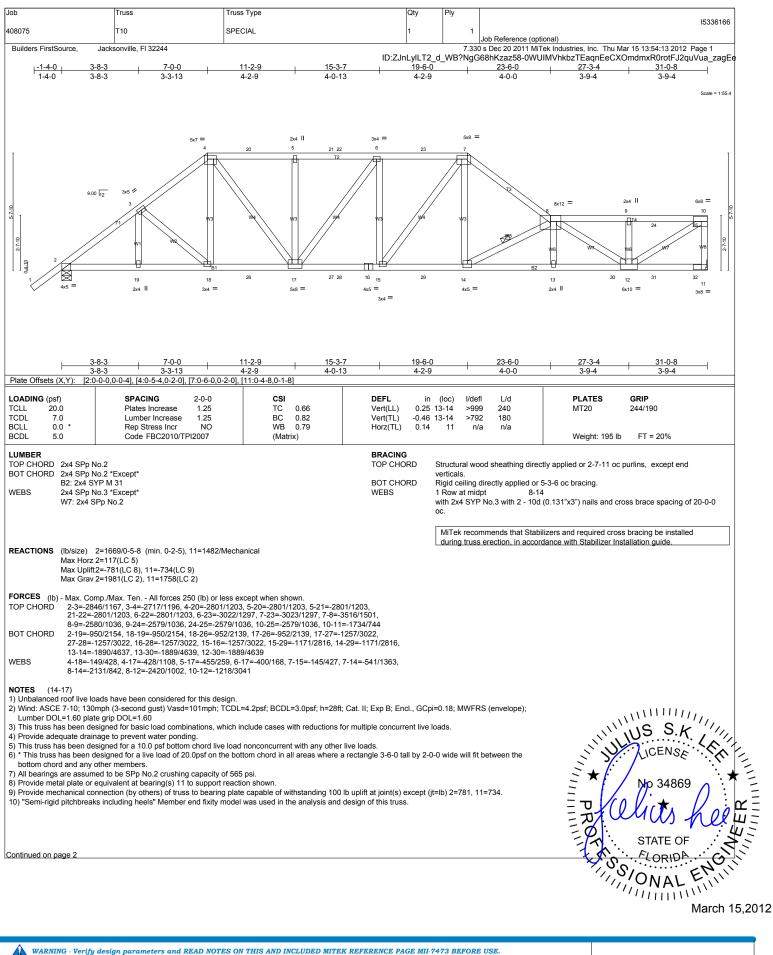

Di Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)
 Vert: 1-3=-44, 3-5=-44, 1-5=-10
 Concentrated Loads (lb)

Vert: 8=-1027(F) 9=-996(F) 10=-924(F) 11=-940(F) 12=-1027(F) 13=-1027(F) 14=-1027(F) 15=-996(F) 16=-940(F) 17=-924(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSJ/PPII Quality Criteria, DSB-89 and BCSII Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component Safely Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/PI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


-	lob	Truss	Truss Type	Qty	Ply	15000405	
	08075	Т09	COMMON	1	2	15336165	
L					_	Job Reference (optional)	
	Builders FirstSource, Jacksonville, FI 32244				7.33	0 s Dec 20 2011 MiTek Industries, Inc. Thu Mar 15 13:54:12 2012 Page 2	
			ID:Z	JnLyILT2_	d_WB?Ng	gG68hKzaz58-YKww89g6qfLNygC14U?9DPEw1cch8xQubElK1YzagE	f

LOAD CASE(S) Standard

Di Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)
 Vert: 1-3=-44, 3-5=-44, 1-5=-19(F=-9)
 Concentrated Loads (lb)

Vert: 3=-435(F) 7=-18(B) 9=-10(B) 10=-1346(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSJ/PPII Quality Criteria, DSB-89 and BCSII Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPII Quality Criteria, DSB-89 and BCS11 Building Component Safety Information** available from Truss Plate Institute, 583 D'Onotrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply			
					15336166		
408075	T10	SPECIAL	1	1			
					Job Reference (optional)		
Builders FirstSource, Jacksonville, FI 32244				7.330 s Dec 20 2011 MiTek Industries, Inc. Thu Mar 15 13:54:13 2012 Page 2			

NOTES (14-17)

ID:ZJnLyILT2_d_WB?NgG68hKzaz58-0WUIMVhkbzTEaqnEeCXOmdmxR0rotFJ2quVua_zagEe

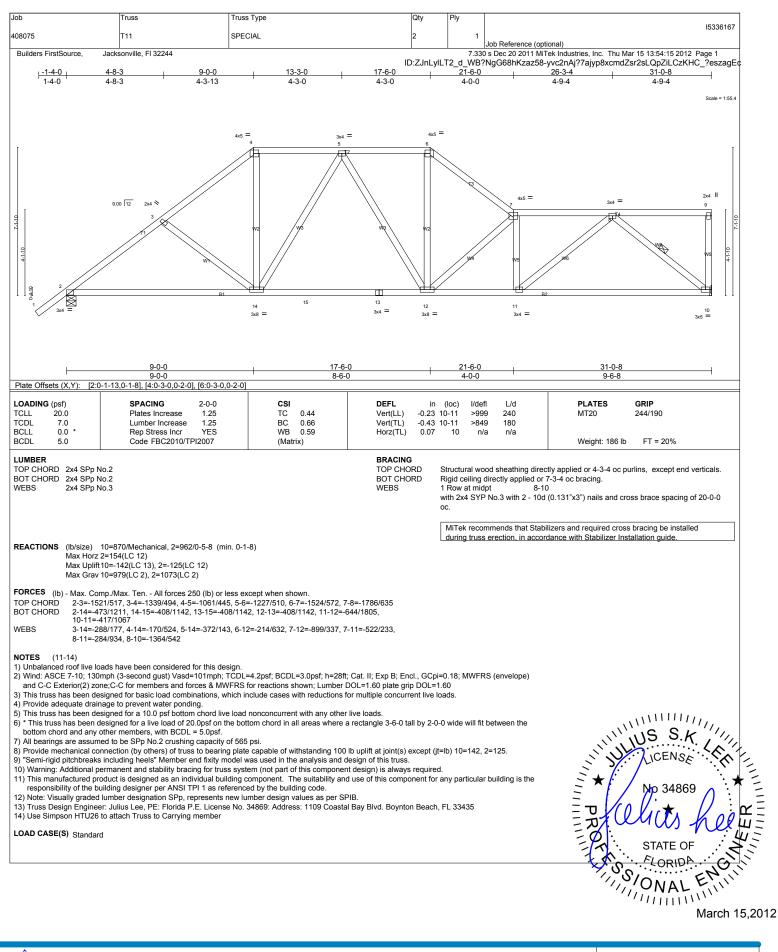
11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 185 lb down and 244 lb up at 7-0-0, 87 lb down and 95 lb up at 9-0-12, 87 lb down and 95 lb up at 11-0-12, 87 lb down and 95 lb up at 13-0-12, 87 lb down and 95 lb up at 13-5-4, 87 lb down and 95 lb up at 15-5-4, 87 lb down and 95 lb up at 17-5-4, 225 lb down and 252 lb up at 19-6-0, and 32 lb down and 67 lb up at 28-6-12, and 32 lb down and 67 lb up at 30-6-12 on top chord, and 265 lb down and 162 lb up at 7-0-0, 51 lb down at 9-0-12, 51 lb down at 11-0-12, 51 lb down at 13-0-12, 51 51 lb down at 13-5-4, 51 lb down at 15-5-4, 51 lb down at 17-5-4, 265 lb down and 162 lb up at 19-5-4, 154 lb down and 70 lb up at 26-6-12, and 11 lb down and 2 lb up at 28-6-12, and 11 lb down and 2 lb up at 30-6-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required. 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

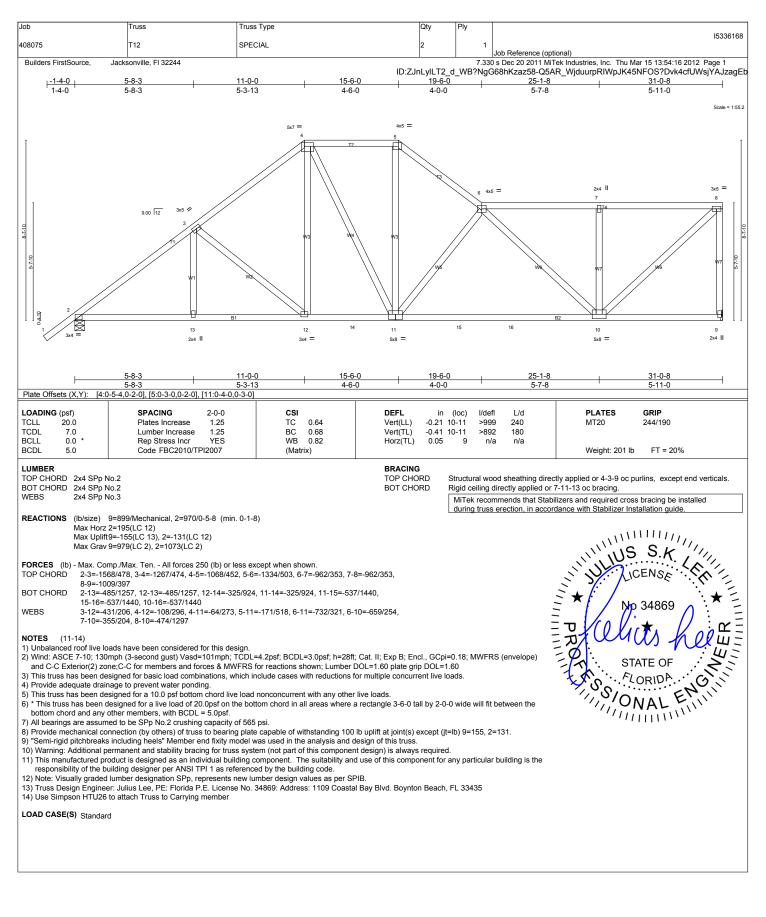
14) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code. 15) Note: Visually graded lumber designation SPp, represents new lumber design values as per SPIB.

16) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

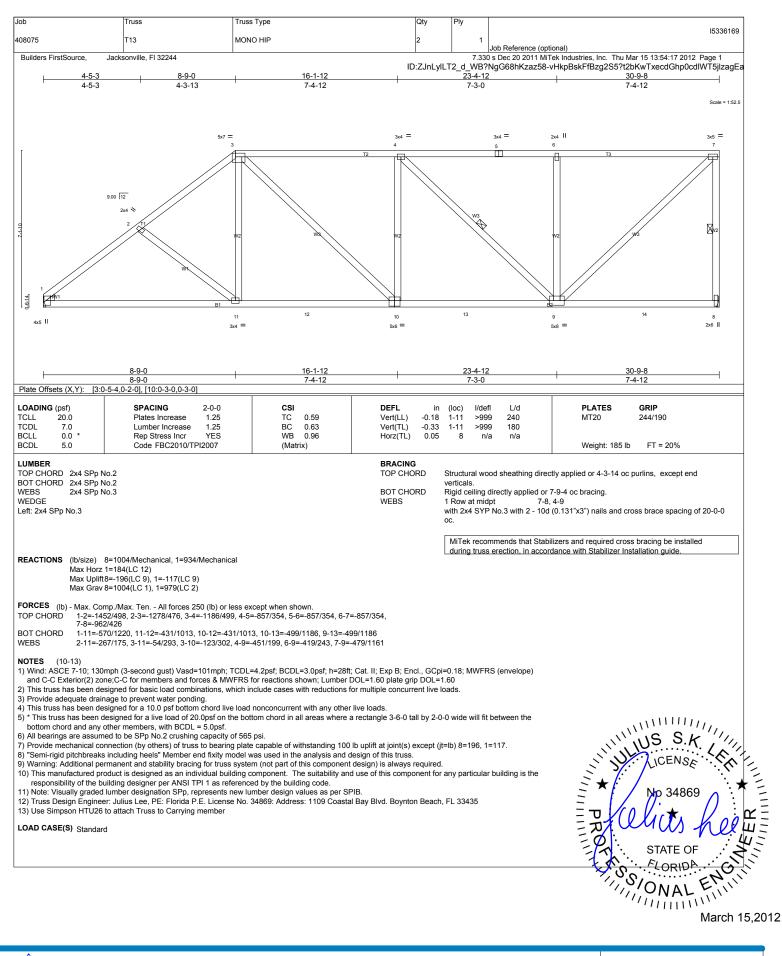
17) Use Simpson HTU26 to attach Truss to Carrying member

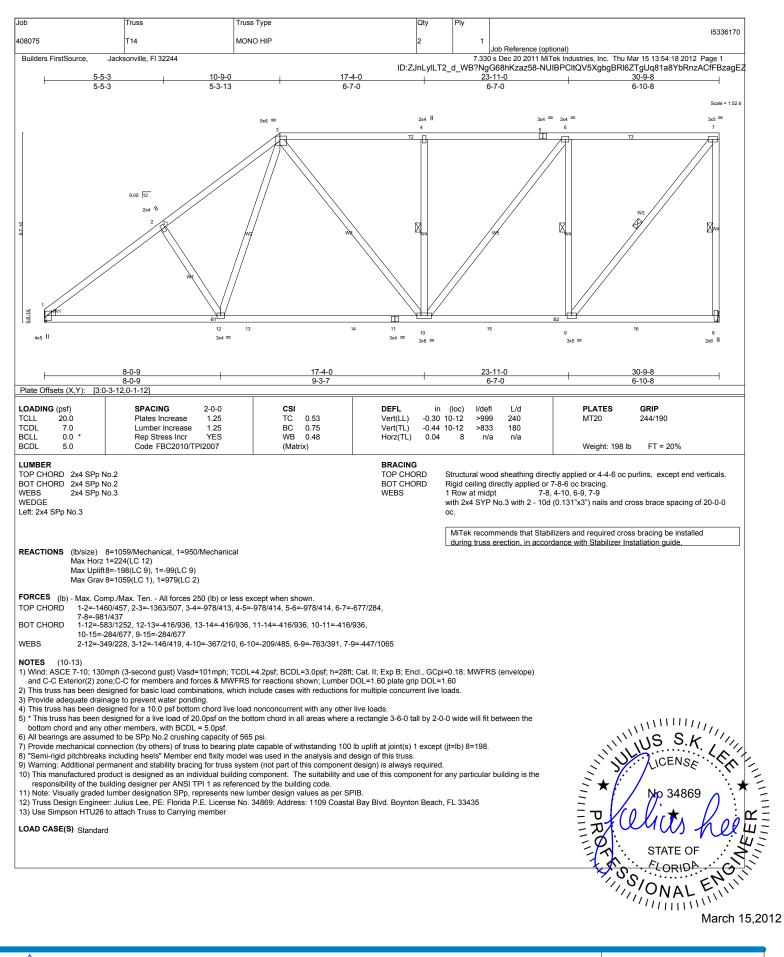

LOAD CASE(S) Standard

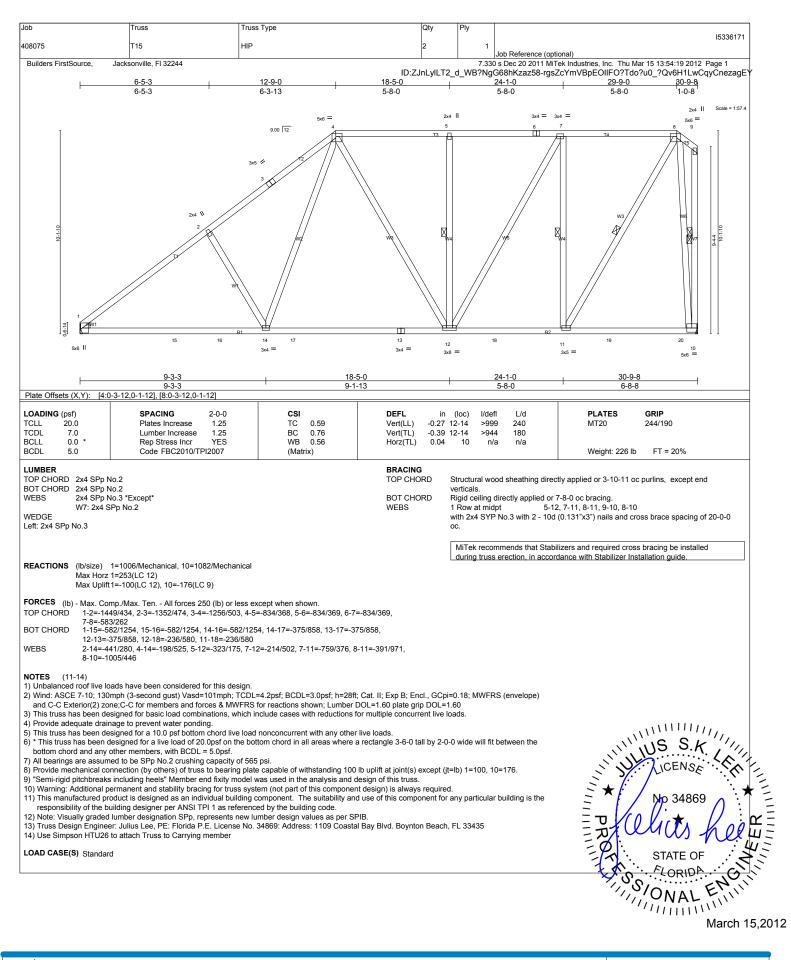
1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

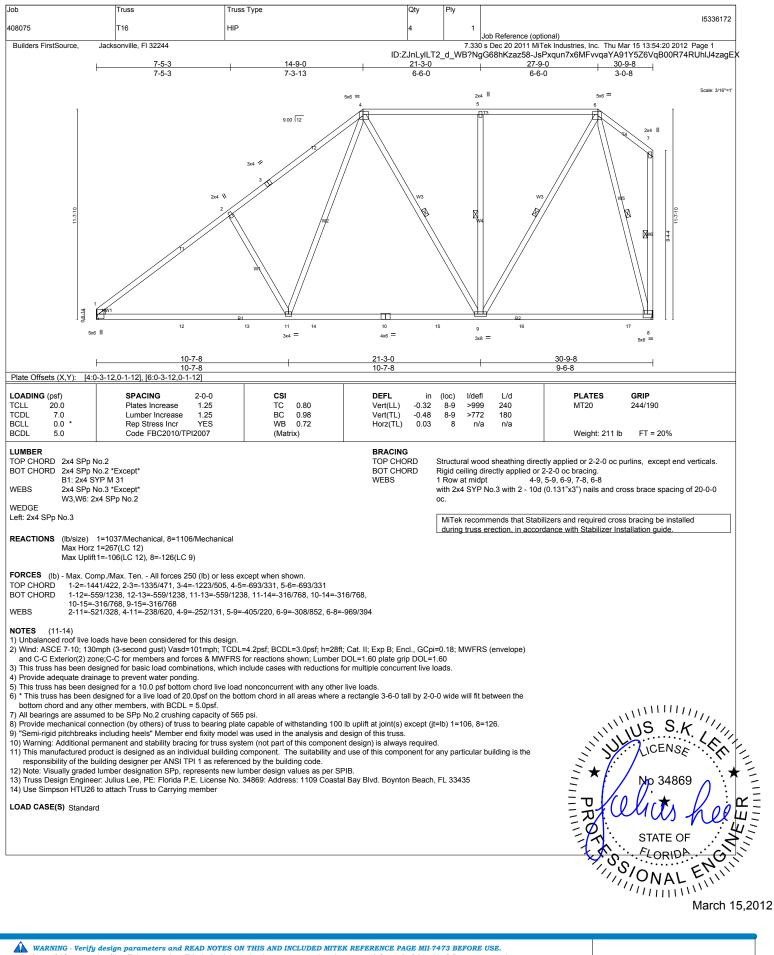

Vert: 1-4=-44, 4-7=-44, 7-8=-44, 8-10=-44, 2-11=-10

Concentrated Loads (lb) Vert: 4=-151(F) 7=-151(F) 18=-219(F) 17=-22(F) 5=-71(F) 6=-71(F) 15=-22(F) 14=-219(F) 20=-71(F) 21=-71(F) 22=-71(F) 23=-71(F) 24=7(F) 25=7(F) 26=-22(F) 27=-22(F) 28=-22(F) 29=-22(F) 30=-127(F) 31=-4(F) 32=-4(F)

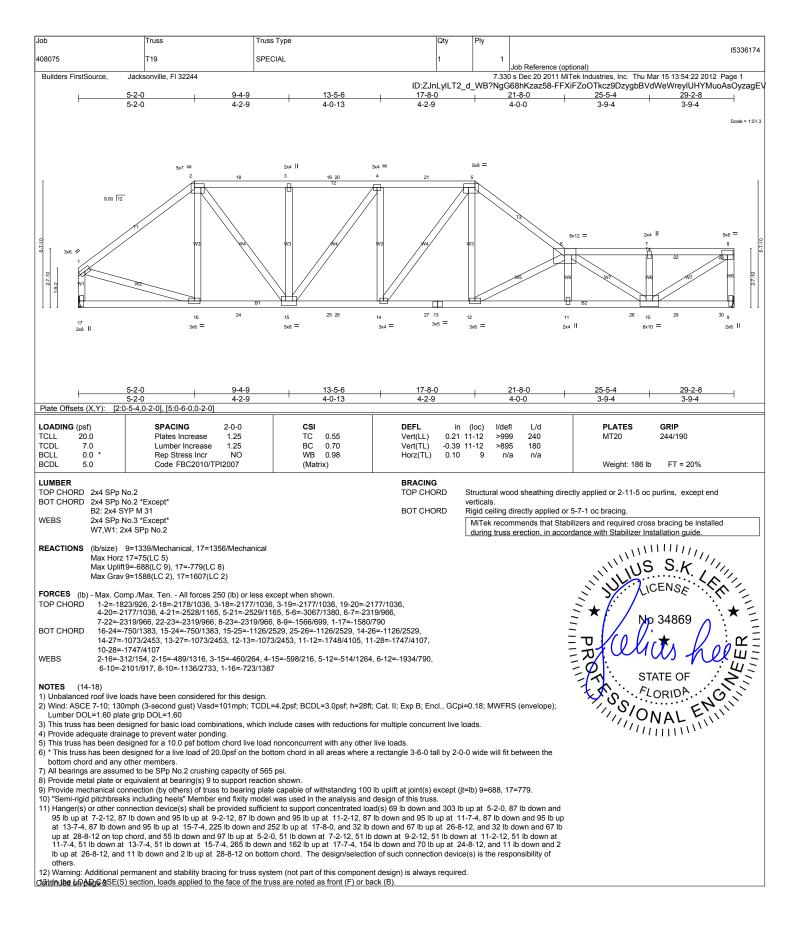

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANS/IPII Quality Criteria, DSB-89 and BCS11 Building Component Safety Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not russ designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANS/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPII Quality Criteria, DSB-89 and BCS11 Building Component Safety Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safely Information available from Truss Plate Institute, SSB D'Onofito Dive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safely Information available from Truss Plate Institute, SSB D'Onofito Dive, Madison, WI 53719.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabricability control, storage, delivery, erection and bracing, consult **ANS/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safely Information available from Truss Plate Institute, SSB D'Onofito Dive, Madison, WI 53719.

108075		Truss Type	Qty	Ply			15336173
	T18	MONO TRUSS	2	1	Job Reference (or		
Builders FirstSource,	Jacksonville, FI 32244						ar 15 13:54:21 2012 Page 1 IJ6SnEgTl3NDf8RJsWzagE
			<u>3-0-0</u> 3-0-0				
							Scale = 1:16
		I	2x4	∥ ₂			
			9.00 12				
		2-7-10	т	W1			
		1					
					7		
		04-10	B1	-'[[]			
			\$	3	<u> </u>		
		$\left \right\rangle$					
		2x4 =		_{2x4}			
LOADING (psf)		-0-0 CSI		loc) l/de			GRIP
TCLL 20.0 TCDL 7.0	Lumber Increase	.25 TC 0.13 .25 BC 0.39	Vert(TL) -0.02	1-3 >99 1-3 >99	9 180	MT20	244/190
3CLL 0.0 * 3CDL 5.0	Rep Stress Incr Code FBC2010/TPI20	NO WB 0.02 007 (Matrix)	Horz(TL) 0.00	3 n/	a n/a	Weight: 13 lb	FT = 20%
LUMBER			BRACING				
TOP CHORD 2x4 SPp BOT CHORD 2x4 SPp	No.2		BOT CHORD R	gid ceiling	directly applied or	ectly applied or 3-0-0 oc pu r 10-0-0 oc bracing.	
WEBS 2x4 SPp	N0.3				erection in acco	bilizers and required cross ordance with Stabilizer Inst	allation quide
	1=207/0-5-8 (min. 0-1-8), 3=1 z 1=59(LC 8)	37/Mechanical					
	ft1=-30(LC 8), 3=-60(LC 8) v 1=249(LC 2), 3=164(LC 2)						
Max Grav		lb) or less except when shown.				111111S	S.K , 11
Max Grav F ORCES (Ib) - Max. Co	v 1=249(LC 2), 3=164(LC 2)	lb) or less except when shown.					S.K.
Max Grav FORCES (lb) - Max. Co NOTES (10-12)	v 1=249(LC 2), 3=164(LC 2) omp./Max. Ten All forces 250 0mph (3-second gust) Vasd=10	lb) or less except when shown. Imph; TCDL=4.2psf; BCDL=3.0psf; h=2;	8ft; Cat. II; Exp B; Encl., GCpi=0	.18; MWFF	RS (envelope);	11111111111111111111111111111111111111	S.K.
Max Grav FORCES (Ib) - Max. Co NOTES (10-12) 1) Wind: ASCE 7-10; 13 Lumber DOL=1.60 pla 2) This truss has been d	v 1=249(LC 2), 3=164(LC 2) omp./Max. Ten All forces 250 Omph (3-second gust) Vasd=10 ate grip DOL=1.60 lesigned for basic load combinat		s for multiple concurrent live loa		RS (envelope);		S.K. ENSE 34869
Max Grav FORCES (Ib) - Max. Co NOTES (10-12) 1) Wind: ASCE 7-10; 13 Lumber DOL=1.60 plb 2) This truss has been d 3) This truss has been d 4) * This truss has been d bottom chord and any	v 1=249(LC 2), 3=164(LC 2) omp./Max. Ten All forces 250 Omph (3-second gust) Vasd=10 ate grip DOL=1.60 lesigned for basic load combinat lesigned for a 10.0 psf bottom cf designed for a live load of 20.0pr other members.	Imph; TCDL=4.2psf; BCDL=3.0psf; h=2 ions, which include cases with reduction ord live load nonconcurrent with any oth sf on the bottom chord in all areas wher	s for multiple concurrent live loa ner live loads.	ds.	between the		S.K. SENSE 34869 *
Max Grav FORCES (Ib) - Max. Co NOTES (10-12) 1) Wind: ASCE 7-10; 13 Lumber DOL=1.60 pla 2) This truss has been d 3) This truss has been d 4) * This truss has been d 4) * This truss has beas bottom chord and any 5) All bearings are assur 5) Provide mechanical c	v 1=249(LC 2), 3=164(LC 2) omp./Max. Ten All forces 250 0mph (3-second gust) Vasd=10 ate grip DOL=1.60 lesigned for basic load combinat lesigned for a live load of 20.0 / other members. med to be SPp No.2 crushing ca onnection (by others) of truss to	Imph; TCDL=4.2psf; BCDL=3.0psf; h=2i ons, which include cases with reduction ord live load nonconcurrent with any otf sf on the bottom chord in all areas wher pacity of 565 psi. bearing plate capable of withstanding 10	s for multiple concurrent live loa ter live loads. e a rectangle 3-6-0 tall by 2-0-0 00 lb uplift at joint(s) 1, 3.	ds.	between the		*
Max Grav FORCES (lb) - Max. Co NOTES (10-12) 1) Wind: ASCE 7-10; 13 Lumber DOL=1.60 pla 2) This truss has been d 3) This truss has been d 3) This truss has been d 4) * This truss has been bottom chord and any 5) All bearings are assu 6) Provide mechanical c 7) "Semi-rigid pitchbreał 8) Hanger(s) or other co	v 1=249(LC 2), 3=164(LC 2) omp./Max. Ten All forces 250 Omph (3-second gust) Vasd=10 ate grip DOL=1.60 lesigned for basic load combinat lesigned for a live load of 20.0p v other members. med to be SPp No.2 crushing ca onnection (by others) of truss to s including heels" Member end nnection device(s) shall be prov	Imph; TCDL=4.2psf; BCDL=3.0psf; h=2i ions, which include cases with reduction ord live load nonconcurrent with any oth sf on the bottom chord in all areas wher pacity of 565 psi. bearing plate capable of withstanding 11 fixity model was used in the analysis and ded sufficient to support concentrated Ic	s for multiple concurrent live loa ner live loads. e a rectangle 3-6-0 tall by 2-0-0 20 lb uplift at joint(s) 1, 3. d design of this truss.	ds. wide will fil	between the		*
Max Grav FORCES (Ib) - Max. Co NOTES (10-12) 1) Wind: ASCE 7-10; 13 Lumber DOL=1.60 plb 2) This truss has been d 3) This truss has been d 4) * This truss has been d 4) * This truss has been d bottom chord and any 5) All bearings are assure 6) Provide mechanical c 7) "Semi-rigid pitchbreak 8) Hanger(s) or other co 7) "Semi-rigid pitchbreak 8) Hanger(s) or other co 7) Warning: Additional p	v 1=249(LC 2), 3=164(LC 2) omp./Max. Ten All forces 250 0mph (3-second gust) Vasd=10 ate grip DOL=1.60 lesigned for basic load combinat lesigned for a 10.0 psf bottom cf designed for a live load of 20.0 v other members. med to be SPp No.2 crushing ca onnection (by others) of truss to sincluding heels" Member end nnection device(s) shall be prov of such connection device(s) is 1	Imph; TCDL=4.2psf; BCDL=3.0psf; h=2i ons, which include cases with reduction ord live load nonconcurrent with any oth sf on the bottom chord in all areas wher pacity of 565 psi. bearing plate capable of withstanding 11 fixity model was used in the analysis and ded sufficient to support concentrated Ic he responsibility of others.	s for multiple concurrent live loa er live loads. e a rectangle 3-6-0 tall by 2-0-0 00 lb uplift at joint(s) 1, 3. d design of this truss. aad(s) 245 lb down and 60 lb up ent design) is always required.	ds. wide will fit at 1-1-1 o	between the		*
Max Grav FORCES (Ib) - Max. Co NOTES (10-12) 1) Wind: ASCE 7-10; 13 Lumber DOL=1.60 pla 2) This truss has been d 3) This truss has been d 4) *This truss has been d 4) *This truss has been bottom chord and any 5) All bearings are assuu 6) Provide mechanical c 7) "Semi-rigid pitchbreak 8) Hanger(s) or other co The design/selection - P) Warning: Additional p 10) This manufactured p responsibility of the I	v 1=249(LC 2), 3=164(LC 2) omp./Max. Ten All forces 250 Omph (3-second gust) Vasd=10 ate grip DOL=1.60 lesigned for basic load combinat lesigned for a live load of 20.0p o there members. med to be SPp No.2 crushing cc onnection (by others) of truss to si including heels" Member end nnection device(s) shall be prov of such connection device(s) is 1 ermanent and stability bracing for building designer per ANSI TP1	Imph; TCDL=4.2psf; BCDL=3.0psf; h=2i ions, which include cases with reduction ord live load nonconcurrent with any oth sf on the bottom chord in all areas wher pacity of 565 psi. bearing plate capable of withstanding 10 fixity model was used in the analysis and ded sufficient to support concentrated lo he responsibility of others. or truss system (not part of this compone Jal building component. The suitability as referenced by the building code.	s for multiple concurrent live loa ner live loads. e a rectangle 3-6-0 tall by 2-0-0 00 lb uplift at joint(s) 1, 3. d design of this truss. vad(s) 245 lb down and 60 lb up ent design) is always required. and use of this component for ar	ds. wide will fit at 1-1-1 o	between the		*
Max Grav FORCES (Ib) - Max. Co NOTES (10-12) 1) Wind: ASCE 7-10; 13 Lumber DOL=1.60 pla 2) This truss has been d 3) This truss has been d 4) * This truss has been d 4) * This truss has been d 4) * This truss has been d 5) All bearings are assure 5) All bearings are assure 5) Provide mechanical c 7) "Semi-rigid pitchbreak 8) Hanger(s) or other co The design/selection - 90 Warning: Additional p 10) This manufactured p responsibility of the f 11) Note: Visually grade	v 1=249(LC 2), 3=164(LC 2) omp./Max. Ten All forces 250 Omph (3-second gust) Vasd=10 ate grip DOL=1.60 lesigned for basic load combinat lesigned for a live load of 20.0 / other members. med to be SPp No.2 crushing ca onnection (by others) of truss to (s including heels" Member end nnection device(s) shall be prov of such connection device(s) is t ermanent and stability bracing for roduct is designed as an individ building designation SPp, repre	Imph; TCDL=4.2psf; BCDL=3.0psf; h=2i ions, which include cases with reduction ord live load nonconcurrent with any oth sf on the bottom chord in all areas wher pacity of 565 psi. bearing plate capable of withstanding 11 fixity model was used in the analysis and ded sufficient to support concentrated Ic he responsibility of others. or truss system (not part of this compone al building component. The suitability a	s for multiple concurrent live loa ter live loads. e a rectangle 3-6-0 tall by 2-0-0 00 lb uplift at joint(s) 1, 3. d design of this truss. boad(s) 245 lb down and 60 lb up ent design) is always required. and use of this component for ar SPIB.	ds. wide will fit at 1-1-1 or ny particula	between the		*
Max Grav FORCES (Ib) - Max. Co NOTES (10-12) 1) Wind: ASCE 7-10; 13 Lumber DOL=1.60 pla 2) This truss has been d 3) This truss has been d 4) * This truss has been d 4) * This truss has been d 4) * This truss has been d 5) All bearings are assur 5) All bearings are assur 5) Provide mechanical c 7) "Semi-rigid pitchbreak 6) Hanger(s) or other co The design/selection - 10) Warning: Additional p 10) This manufactured p responsibility of the 11) Note: Visually grade- 12) Truss Design Engine LOAD CASE(S) Standa	v 1=249(LC 2), 3=164(LC 2) omp./Max. Ten All forces 250 Omph (3-second gust) Vasd=10 ate grip DOL=1.60 lesigned for basic load combinat lesigned for a live load of 20.0 r other members. med to be SPp No.2 crushing ca onnection (by others) of truss to ss including heels" Member end nnection device(s) shall be prov of such connection device(s) is 1 ermanent and stability bracing for roduct is designed as an individ building designer per ANSI TPI - d lumber designation SPp, repre ser: Julius Lee, PE: Florida P.E. ard	Imph; TCDL=4.2psf; BCDL=3.0psf; h=2i ons, which include cases with reduction ord live load nonconcurrent with any oth so n the bottom chord in all areas wher pacity of 565 psi. bearing plate capable of withstanding 10 fixity model was used in the analysis and ded sufficient to support concentrated to he responsibility of others. or truss system (not part of this compone ual building component. The suitability a as referenced by the building code. sents new lumber design values as per	s for multiple concurrent live loa ter live loads. e a rectangle 3-6-0 tall by 2-0-0 00 lb uplift at joint(s) 1, 3. d design of this truss. boad(s) 245 lb down and 60 lb up ent design) is always required. and use of this component for ar SPIB.	ds. wide will fit at 1-1-1 or ny particula	between the	PROUS STANS	*
Max Grav FORCES (Ib) - Max. Co NOTES (10-12) I) Wind: ASCE 7-10; 13 Lumber DOL=1.60 pla 2) This truss has been d 3) This truss has been d 3) This truss has been d 4) * This truss has been d 5) All bearings are assuu 5) Provide mechanical c 7) "Semi-rigid pitchbreak 5) All pearings are assuu 6) Provide mechanical c 7) "Semi-rigid pitchbreak 6) Hanger(s) or other co The design/selection of 1) Warning: Additional p 10) This manufactured p responsibility of the l 11) Note: Visually grade 12) Truss Design Engine COAD CASE(S) Standa 1) Regular: Lumber Incru Uniform Loads (plf)	v 1=249(LC 2), 3=164(LC 2) omp./Max. Ten All forces 250 Omph (3-second gust) Vasd=10 ate grip DOL=1.60 lesigned for basic load combinat lesigned for a 10.0 psf bottom cf designed for a live load of 20.0p o ther members. med to be SPp No.2 crushing ce onnection (by others) of truss to ss including heels" Member end nnection device(s) shall be prov of such connection device(s) is 1 ermanent and stability bracing fr orduct is designed as an individ building designer per ANSI TPI d lumber designation SPp, repre seer: Julius Lee, PE: Florida P.E. ard ease=1.25, Plate Increase=1.25	Imph; TCDL=4.2psf; BCDL=3.0psf; h=2i ons, which include cases with reduction ord live load nonconcurrent with any oth so n the bottom chord in all areas wher pacity of 565 psi. bearing plate capable of withstanding 10 fixity model was used in the analysis and ded sufficient to support concentrated to he responsibility of others. or truss system (not part of this compone ual building component. The suitability a as referenced by the building code. sents new lumber design values as per	s for multiple concurrent live loa ter live loads. e a rectangle 3-6-0 tall by 2-0-0 00 lb uplift at joint(s) 1, 3. d design of this truss. boad(s) 245 lb down and 60 lb up ent design) is always required. and use of this component for ar SPIB.	ds. wide will fit at 1-1-1 or ny particula	between the		*
Max Grav FORCES (b) - Max. Co NOTES (10-12) 1) Wind: ASCE 7-10; 13 Lumber DOL=1.60 pic 2) This truss has been d 3) This truss has been d 3) This truss has been d 4) * This truss has been d 4) * This truss has been d 5) All bearings are assuu 5) Provide mechanical c 7) "Semi-rigid pitchbreak 3) Hanger(s) or other co The design/selection - 0) Warning: Additional pi 10) This manufactured p responsibility of the I 11) Note: Visually grade 12) Truss Design Engine COAD CASE(S) Standa 1) Regular: Lumber Incr	v 1=249(LC 2), 3=164(LC 2) omp./Max. Ten All forces 250 0mph (3-second gust) Vasd=10 ate grip DOL=1.60 lesigned for basic load combinat lesigned for a live load of 20.0 r other members. med to be SPp No.2 crushing ca onnection device(s) shall be prov of such connection device(s) is 1 ermanent and stability bracing for roduct is designer per ANSI TPI - d lumber designation SPp, repre- ser: Julius Lee, PE: Florida P.E. ard ease=1.25, Plate Increase=1.25 , 1-3=-10	Imph; TCDL=4.2psf; BCDL=3.0psf; h=2i ons, which include cases with reduction ord live load nonconcurrent with any oth so n the bottom chord in all areas wher pacity of 565 psi. bearing plate capable of withstanding 10 fixity model was used in the analysis and ded sufficient to support concentrated to he responsibility of others. or truss system (not part of this compone ual building component. The suitability a as referenced by the building code. sents new lumber design values as per	s for multiple concurrent live loa ter live loads. e a rectangle 3-6-0 tall by 2-0-0 00 lb uplift at joint(s) 1, 3. d design of this truss. boad(s) 245 lb down and 60 lb up ent design) is always required. and use of this component for ar SPIB.	ds. wide will fit at 1-1-1 or ny particula	between the		*
Max Grav FORCES (Ib) - Max. Co NOTES (10-12) 1) Wind: ASCE 7-10; 13 Lumber DOL=1.60 pla 2) This truss has been d 3) This truss has been d 4) This truss has been d 4) This truss has been d 5) All bearings are assur 5) All bearings are assur 5) Provide mechanical c 7) "Semi-rigid pitchbreak 8) Hanger(s) or other co The design/selection - 10) Warning: Additional p 10) This manufactured p responsibility of the 1 11) Note: Visually grade 12) Truss Design Engine LOAD CASE(S) Standa 1) Regular: Lumber Incr Uniform Loads (plf) Vert: 1-2=-44	v 1=249(LC 2), 3=164(LC 2) omp./Max. Ten All forces 250 0mph (3-second gust) Vasd=10 ate grip DOL=1.60 lesigned for basic load combinat lesigned for a live load of 20.0 r other members. med to be SPp No.2 crushing ca onnection device(s) shall be prov of such connection device(s) is 1 ermanent and stability bracing for roduct is designer per ANSI TPI - d lumber designation SPp, repre- ser: Julius Lee, PE: Florida P.E. ard ease=1.25, Plate Increase=1.25 , 1-3=-10	Imph; TCDL=4.2psf; BCDL=3.0psf; h=2i ons, which include cases with reduction ord live load nonconcurrent with any oth so n the bottom chord in all areas wher pacity of 565 psi. bearing plate capable of withstanding 10 fixity model was used in the analysis and ded sufficient to support concentrated to he responsibility of others. or truss system (not part of this compone ual building component. The suitability a as referenced by the building code. sents new lumber design values as per	s for multiple concurrent live loa ter live loads. e a rectangle 3-6-0 tall by 2-0-0 00 lb uplift at joint(s) 1, 3. d design of this truss. boad(s) 245 lb down and 60 lb up ent design) is always required. and use of this component for ar SPIB.	ds. wide will fit at 1-1-1 or ny particula	between the		*
Max Grav FORCES (lb) - Max. Co NOTES (10-12) 1) Wind: ASCE 7-10; 13 Lumber DOL=1.60 pic 2) This truss has been d 3) This truss has been d 3) This truss has been d 4) * This truss has been d 5) All bearings are assuu 6) Provide mechanical c 7) "Semi-rigid pitchbreak 8) Hanger(s) or other co The design/selection - 9) Warning: Additional p 10) This manufactured p responsibility of the I 11) Note: Visually grade 12) Truss Design Engine LOAD CASE(S) Standa 1) Regular: Lumber Incru Uniform Loads (plf) Vert: 1-2=-44 Concentrated Loads (v 1=249(LC 2), 3=164(LC 2) omp./Max. Ten All forces 250 0mph (3-second gust) Vasd=10 ate grip DOL=1.60 lesigned for basic load combinat lesigned for a live load of 20.0 r other members. med to be SPp No.2 crushing ca onnection device(s) shall be prov of such connection device(s) is 1 ermanent and stability bracing for roduct is designer per ANSI TPI - d lumber designation SPp, repre- ser: Julius Lee, PE: Florida P.E. ard ease=1.25, Plate Increase=1.25 , 1-3=-10	Imph; TCDL=4.2psf; BCDL=3.0psf; h=2i ons, which include cases with reduction ord live load nonconcurrent with any oth so n the bottom chord in all areas wher pacity of 565 psi. bearing plate capable of withstanding 10 fixity model was used in the analysis and ded sufficient to support concentrated to he responsibility of others. or truss system (not part of this compone ual building component. The suitability a as referenced by the building code. sents new lumber design values as per	s for multiple concurrent live loa ter live loads. e a rectangle 3-6-0 tall by 2-0-0 00 lb uplift at joint(s) 1, 3. d design of this truss. boad(s) 245 lb down and 60 lb up ent design) is always required. and use of this component for ar SPIB.	ds. wide will fit at 1-1-1 or ny particula	between the		*
Max Grav FORCES (lb) - Max. Co NOTES (10-12) 1) Wind: ASCE 7-10; 13 Lumber DOL=1.60 ple 2) This truss has been d 3) This truss has been d 3) This truss has been d 4) * This truss has been d 4) * This truss has been bottom chord and any 5) All bearings are assuu 6) Provide mechanical c 7) "Semi-rigid pitchbreak 8) Hanger(s) or other co The design/selection - 9) Warning: Additional p 10) This manufactured p responsibility of the I 11) Note: Visually grade 12) Truss Design Engine LOAD CASE(S) Standa 1) Regular: Lumber Incru Uniform Loads (plf) Vert: 1-2=-44 Concentrated Loads (v 1=249(LC 2), 3=164(LC 2) omp./Max. Ten All forces 250 0mph (3-second gust) Vasd=10 ate grip DOL=1.60 lesigned for basic load combinat lesigned for a live load of 20.0 r other members. med to be SPp No.2 crushing ca onnection device(s) shall be prov of such connection device(s) is 1 ermanent and stability bracing for roduct is designer per ANSI TPI - d lumber designation SPp, repre- ser: Julius Lee, PE: Florida P.E. ard ease=1.25, Plate Increase=1.25 , 1-3=-10	Imph; TCDL=4.2psf; BCDL=3.0psf; h=2i ons, which include cases with reduction ord live load nonconcurrent with any oth so n the bottom chord in all areas wher pacity of 565 psi. bearing plate capable of withstanding 10 fixity model was used in the analysis and ded sufficient to support concentrated to he responsibility of others. or truss system (not part of this compone ual building component. The suitability a as referenced by the building code. sents new lumber design values as per	s for multiple concurrent live loa ter live loads. e a rectangle 3-6-0 tall by 2-0-0 00 lb uplift at joint(s) 1, 3. d design of this truss. boad(s) 245 lb down and 60 lb up ent design) is always required. and use of this component for ar SPIB.	ds. wide will fit at 1-1-1 or ny particula	between the		*
Max Grav FORCES (lb) - Max. Co NOTES (10-12) 1) Wind: ASCE 7-10; 13 Lumber DOL=1.60 ple 2) This truss has been d 3) This truss has been d 3) This truss has been d 4) * This truss has been d 4) * This truss has been bottom chord and any 5) All bearings are assuu 6) Provide mechanical c 7) "Semi-rigid pitchbreak 8) Hanger(s) or other co The design/selection - 9) Warning: Additional p 10) This manufactured p responsibility of the I 11) Note: Visually grade 12) Truss Design Engine LOAD CASE(S) Standa 1) Regular: Lumber Incru Uniform Loads (plf) Vert: 1-2=-44 Concentrated Loads (v 1=249(LC 2), 3=164(LC 2) omp./Max. Ten All forces 250 0mph (3-second gust) Vasd=10 ate grip DOL=1.60 lesigned for basic load combinat lesigned for a live load of 20.0 r other members. med to be SPp No.2 crushing ca onnection device(s) shall be prov of such connection device(s) is 1 ermanent and stability bracing for roduct is designer per ANSI TPI - d lumber designation SPp, repre- ser: Julius Lee, PE: Florida P.E. ard ease=1.25, Plate Increase=1.25 , 1-3=-10	Imph; TCDL=4.2psf; BCDL=3.0psf; h=2i ons, which include cases with reduction ord live load nonconcurrent with any oth so n the bottom chord in all areas wher pacity of 565 psi. bearing plate capable of withstanding 10 fixity model was used in the analysis and ded sufficient to support concentrated to he responsibility of others. or truss system (not part of this compone ual building component. The suitability a as referenced by the building code. sents new lumber design values as per	s for multiple concurrent live loa ter live loads. e a rectangle 3-6-0 tall by 2-0-0 00 lb uplift at joint(s) 1, 3. d design of this truss. boad(s) 245 lb down and 60 lb up ent design) is always required. and use of this component for ar SPIB.	ds. wide will fit at 1-1-1 or ny particula	between the		*
Max Grav FORCES (b) - Max. Co NOTES (10-12) 1) Wind: ASCE 7-10; 13 Lumber DOL=1.60 pic 2) This truss has been d 3) This truss has been d 3) This truss has been d 4) * This truss has been d 4) * This truss has been d 5) All bearings are assuu 5) Provide mechanical c 7) "Semi-rigid pitchbreak 3) Hanger(s) or other co The design/selection - 10) Warning: Additional pi 10) This manufactured p responsibility of the I 11) Note: Visually grade 12) Truss Design Engine COAD CASE(S) Standa 1) Regular: Lumber Incru Uniform Loads (plf) Vert: 1-2=-44 Concentrated Loads (v 1=249(LC 2), 3=164(LC 2) omp./Max. Ten All forces 250 0mph (3-second gust) Vasd=10 ate grip DOL=1.60 lesigned for basic load combinat lesigned for a live load of 20.0 r other members. med to be SPp No.2 crushing ca onnection device(s) shall be prov of such connection device(s) is 1 ermanent and stability bracing for roduct is designer per ANSI TPI - d lumber designation SPp, repre- ser: Julius Lee, PE: Florida P.E. ard ease=1.25, Plate Increase=1.25 , 1-3=-10	Imph; TCDL=4.2psf; BCDL=3.0psf; h=2i ons, which include cases with reduction ord live load nonconcurrent with any oth so n the bottom chord in all areas wher pacity of 565 psi. bearing plate capable of withstanding 10 fixity model was used in the analysis and ded sufficient to support concentrated to he responsibility of others. or truss system (not part of this compone ual building component. The suitability a as referenced by the building code. sents new lumber design values as per	s for multiple concurrent live loa ter live loads. e a rectangle 3-6-0 tall by 2-0-0 00 lb uplift at joint(s) 1, 3. d design of this truss. boad(s) 245 lb down and 60 lb up ent design) is always required. and use of this component for ar SPIB.	ds. wide will fit at 1-1-1 or ny particula	between the		*
Max Grav CORCES (b) - Max. Co NOTES (10-12)) Wind: ASCE 7-10; 13 Lumber DOL=1.60 pic 2) This truss has been d) This trus has been d) This truss has been d) This trus has been	v 1=249(LC 2), 3=164(LC 2) omp./Max. Ten All forces 250 0mph (3-second gust) Vasd=10 ate grip DOL=1.60 lesigned for basic load combinat lesigned for a live load of 20.0 r other members. med to be SPp No.2 crushing ca onnection device(s) shall be prov of such connection device(s) is 1 ermanent and stability bracing for roduct is designer per ANSI TPI - d lumber designation SPp, repre- ser: Julius Lee, PE: Florida P.E. ard ease=1.25, Plate Increase=1.25 , 1-3=-10	Imph; TCDL=4.2psf; BCDL=3.0psf; h=2i ons, which include cases with reduction ord live load nonconcurrent with any oth so n the bottom chord in all areas wher pacity of 565 psi. bearing plate capable of withstanding 10 fixity model was used in the analysis and ded sufficient to support concentrated to he responsibility of others. or truss system (not part of this compone ual building component. The suitability a as referenced by the building code. sents new lumber design values as per	s for multiple concurrent live loa ter live loads. e a rectangle 3-6-0 tall by 2-0-0 00 lb uplift at joint(s) 1, 3. d design of this truss. boad(s) 245 lb down and 60 lb up ent design) is always required. and use of this component for ar SPIB.	ds. wide will fit at 1-1-1 or ny particula	between the		*

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP11 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component** Safety Information available from Truss Plate Institute, 583 D'Onofrio Dirve, Madison, WI 53719.

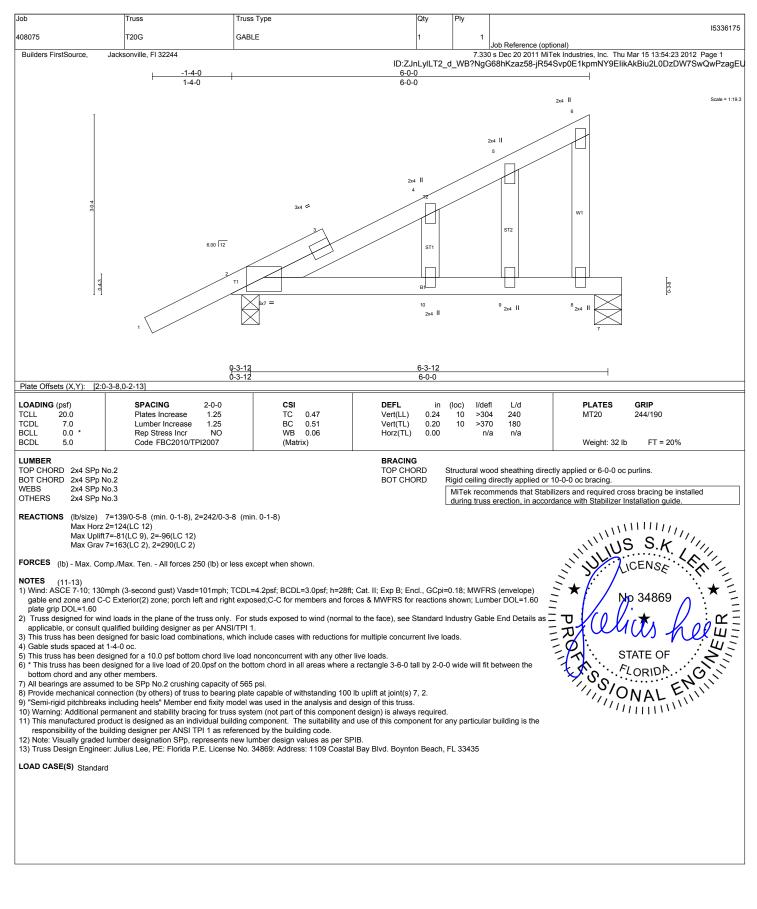
Job	Truss	Truss Type	Qty	Ply	
					15336174
408075	T19	SPECIAL	1	1	
					Job Reference (optional)
Builders FirstSource, Jacks	onville, FI 32244			7.33	0 s Dec 20 2011 MiTek Industries, Inc. Thu Mar 15 13:54:22 2012 Page 2

 14) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI

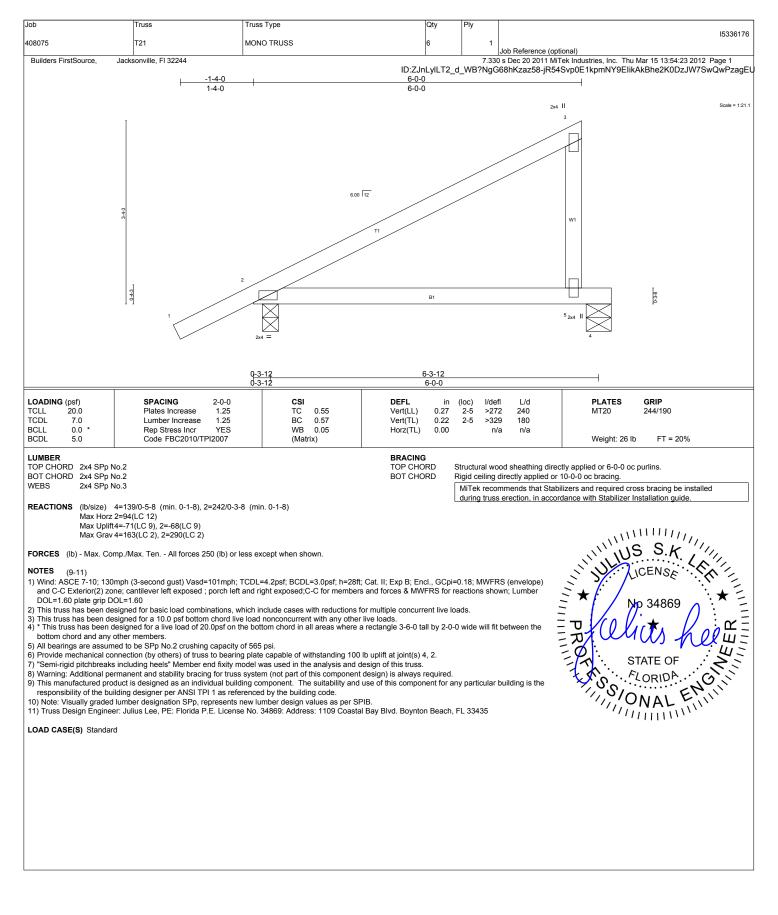
 TPI 1 as referenced by the building code.

Note: Visually graded lumber designation SPp, represents new lumber design values as per SPIB.
 Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

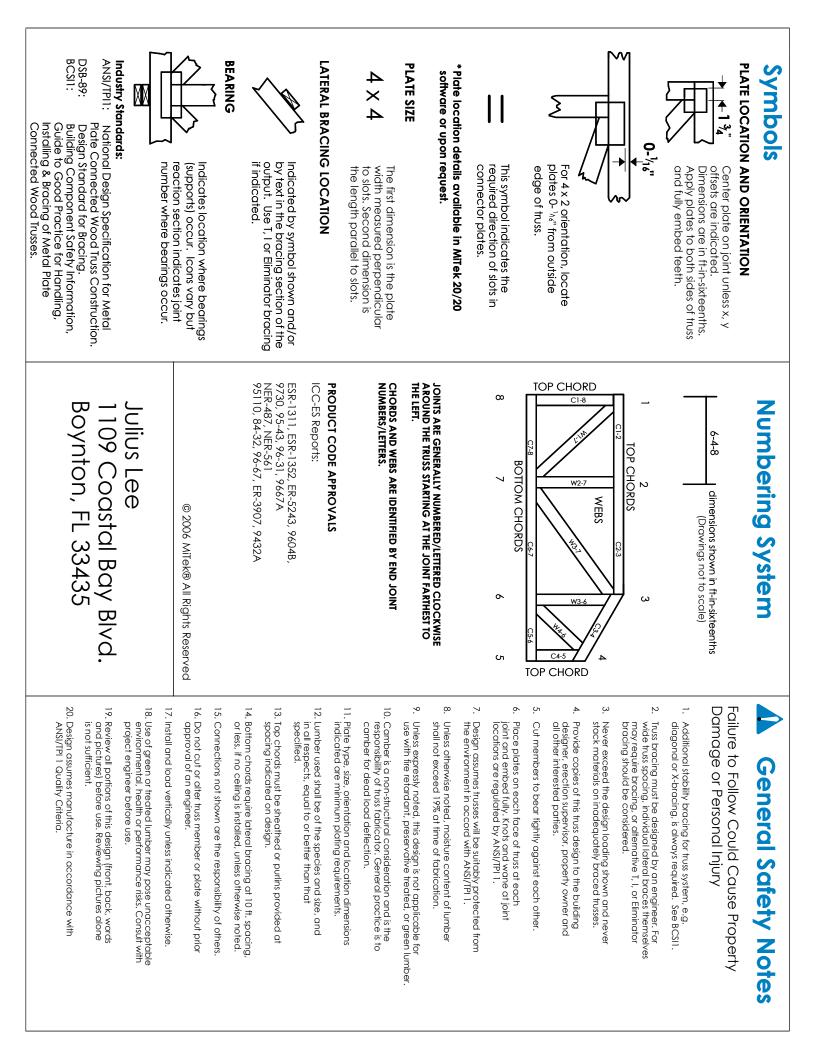
17) Use Simpson HTU26 to attach Truss to Carrying member 18) Use Simpson SUR\L210 to attach Truss to Carrying member


LOAD CASE(S) Standard 1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-2=-44, 2-5=-44, 5-6=-44, 6-8=-44, 9-17=-10


Concentrated Loads (lb)

Vert: 2=-57(B) 5=-151(B) 16=-25(B) 15=-22(B) 3=-71(B) 4=-71(B) 14=-22(B) 12=-219(B) 18=-71(B) 19=-71(B) 20=-71(B) 21=-71(B) 22=7(B) 23=7(B) 23=7(B) 24=-22(B) 25=-22(B) 25=-22(B


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIT-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component Safely Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/PI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

