

RE: 814104 -

Site Information:

City: DUVAL CTY

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

> MiTek USA, Inc. 6904 Parke East Blvd. Tampa, FL 33610-4115

Customer Info: STARR CUSTOM HOMES Project Name: 814104 Model: 4098 Lot/Block: 167 Address: N/A Subdivision: PABLO CREEK RESERVE

State: Florida

Name Address and License # of Structural Engineer of Record, If there is one, for the building. Name: Pontigo, Luis Antonio, PE Address: 420 Osceola Ave. City: Jacksonville Beach

State: Florida

License #: 53311

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2014/TPI2007 Wind Code: ASCE 7-10 Roof Load: 37.0 psf

Design Program: MiTek 20/20 7.6 Wind Speed: 130 mph Floor Load: 55.0 psf

This package includes 49 individual, dated Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet. I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T8846950	F01	6/15/016	18	T8846967	P01	6/15/016
2	T8846951	F02	6/15/016	19	T8846968	P02	6/15/016
3	T8846952	F03	6/15/016	20	T8846969	T01	6/15/016
4	T8846953	F05	6/15/016	21	T8846970	T02	6/15/016
5	T8846954	F06	6/15/016	22	T8846971	T03	6/15/016
6	T8846955	F07	6/15/016	23	T8846972	T04	6/15/016
7	T8846956	F08	6/15/016	24	T8846973	T05	6/15/016
8	T8846957	F09	6/15/016	25	T8846974	T06	6/15/016
9	T8846958	F10	6/15/016	26	T8846975	T07	6/15/016
10	T8846959	F11	6/15/016	27	T8846976	T08	6/15/016
11	T8846960	F11A	6/15/016	28	T8846977	T09	6/15/016
12	T8846961	F12	6/15/016	29	T8846978	T10	6/15/016
13	T8846962	F13	6/15/016	30	T8846979	T11	6/15/016
14	T8846963	F15	6/15/016	31	T8846980	T12	6/15/016
15	T8846964	F16	6/15/016	32	T8846981	T13	6/15/016
16	T8846965	F17	6/15/016	33	T8846982	T14	6/15/016
17	T8846966	F18	6/15/016	34	T8846983	T15	6/15/016

The truss drawing(s) referenced above have been prepared by MiTek Industries, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Jacksonville.

Truss Design Engineer's Name: Velez, Joaquin My license renewal date for the state of Florida is February 28, 2017.

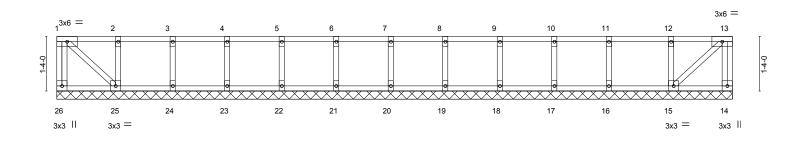
IMPORTANT NOTE: Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2.

Velez, Joaquin

RE: 814104 -

Site Information:

<u>i –</u>


Customer Info: STARR CUSTOM HOMES Project Name: 814104 Model: 4098 Lot/Block: 167 Subdivision: PABLO CREEK RESERVE Address: N/A City: DUVAL CTY State: Florida

No.	Seal#	Truss Name	Date
35	T8846984	T16	6/15/016
36	T8846985	T17	6/15/016
37	T8846986	T18	6/15/016
38	T8846987	T19	6/15/016
39	T8846988	T20	6/15/016
40	T8846989	T21	6/15/016
41	T8846990	T22	6/15/016
42	T8846991	T23	6/15/016
43	T8846992	T24	6/15/016
44	T8846993	T25	6/15/016
45	T8846994	T26	6/15/016
46	T8846995	T27	6/15/016
47	T8846996	T28	6/15/016
48	T8846997	T29	6/15/016
49	T8846998	T30	6/15/016

Job	Truss	Truss Type	Qty	Ply	
814104	F01	Floor Supported Gable	1	1	T8846950
		· · · · · · · · · · · · · · · · · · ·			Job Reference (optional)
Builders FirstSource, Jacksonville, FI 32244 7.640 s Apr 19 2016 MiTek Industries, Inc. Wed Jun 15 11:18:51 2016 Page 1					

7.640 s Apr 19 2016 Mirlek Industries, Inc. Wed Jun 15 11:18:51 2016 Page 1 ID:Zx5HcAbCLiz9Xgaf1n5?sCz6568-V2i5sgJ7qy95magQfmNyS7FJv0?l8eqApwHNmaz63gY

Scale = 1:28.2

		1		16-6-4			
LOADIN TCLL	G (psf) 80.0	SPACING- 2-0-0 Plate Grip DOL 1.00	CSI. TC 0.22		in (loc) l/defl L/d /a - n/a 999	PLATES GRIP MT20 244/190	
TCDL BCLL BCDL	20.0 0.0 5.0	Lumber DOL 1.00 Rep Stress Incr YES Code FBC2014/TPI2007	BC 0.01 WB 0.08 (Matrix)	Vert(TL) n Horz(TL) -0.0	/a - n/a 999 00 14 n/a n/a	Weight: 78 lb FT = 11%	6F 11%F
LUMBER TOP CH	R- ORD 2x4 SF	P No.2(flat)		BRACING- TOP CHORD	Structural wood sheathin	g directly applied or 10-0-0 oc purlins,	except
BOT CH WEBS OTHERS		P No.2(flat) P No.3(flat) P No.3(flat)		BOT CHORD	end verticals. Rigid ceiling directly appl 10-0-0 oc bracing: 25-26	ied or 6-0-0 oc bracing, Except: 14-15.	

16-6-4

REACTIONS. All bearings 16-6-4.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 26, 14 except 25=326(LC 1), 24=269(LC 1), 23=283(LC 1),

22=279(LC 1), 21=280(LC 1), 20=280(LC 1), 19=280(LC 1), 18=281(LC 1), 17=275(LC 1), 16=296(LC 1), 15=347(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-25=-308/0, 3-24=-256/0, 4-23=-269/0, 5-22=-266/0, 6-21=-267/0, 7-20=-267/0,

8-19=-266/0, 9-18=-268/0, 10-17=-262/0, 11-16=-282/0, 12-15=-328/0

NOTES- (7-8)

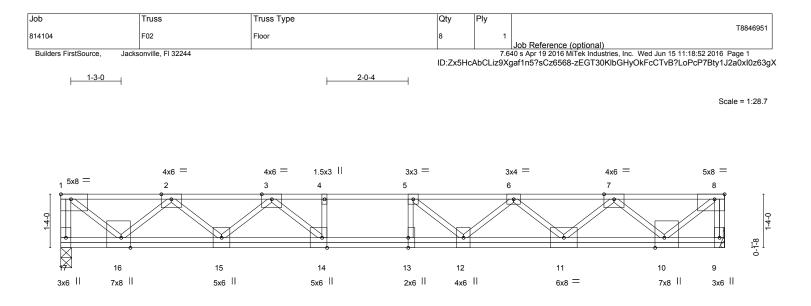
WEBS

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.


5) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

	1-6-0	4-0-0	1		10-0-4			1	2-6-4		15-0-4	16-6-4
	1-6-0	2-6-0	1		6-0-4		1		2-6-0		2-6-0	1-6-0
Plate C	Offsets (X,Y)	[1:Edge,0-1-8], [8:0-3-0,I	Edge], [10:0-3-	0,Edge], [13	:0-3-0,0-0-0]	, [14:0-3-0,Edge],	[16:0-3	-0,Edg	e]		-	
LOADI	NG (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	80.0	Plate Grip DOL	1.00	TC	0.54	Vert(LL)	-0.26	13	>740	360	MT20	244/190
TCDL	20.0	Lumber DOL	1.00	BC	0.96	Vert(TL)	-0.39	13	>505	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.65	Horz(TL)	0.05	9	n/a	n/a		
BCDL	5.0	Code FBC2014/T	PI2007	(Matr	ix)			-	-	-	Weight: 108 lb	FT = 11%F, 11%E
LUMBE	ER-					BRACING-						
TOP CHORD 2x4 SP M 31(flat) BOT CHORD 2x4 SP No.1(flat)			TOP CHOR		Structu end ver		sheathing di	rectly applied or 6-0-0	oc purlins, except			
WEBS		P No.2(flat) *Except*				BOT CHOR		0	0		or 10-0-0 oc bracing,	Except:
	1-17,8-	-9,4-14,5-13: 2x4 SP No.	3(flat)				-	2-2-0 o	c bracing	: 13-14.		

REACTIONS. (lb/size) 17=1708/0-3-4, 9=1708/Mechanical

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 1-17=-1694/0, 8-9=-1688/0, 1-2=-1782/0, 2-3=-4294/0, 3-4=-5930/0, 4-5=-5930/0, 5-6=-5687/0, 6-7=-4333/0, 7-8=-1770/0

 BOT CHORD
 15-16=0/3368, 14-15=0/5274, 13-14=0/5930, 12-13=0/5930, 11-12=0/5286, 10-114

 BOT CHORD
 15-16=0/3368, 14-15=0/5274, 13-14=0/5930, 12-13=0/5930, 11-12=0/5286, 10-11=0/3365

 WEBS
 8-10=0/2304, 1-16=0/2320, 7-10=-2164/0, 2-16=-2151/0, 7-11=0/1312, 2-15=0/1255, 6-11=-1293/0, 3-15=-1330/0, 6-12=0/702, 3-14=0/1263, 5-12=-917/271, 4-14=-382/0, 5-13=-574/276

NOTES- (5-6)

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

3) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job	Truss	Truss Type	Qty	Ply			
814104	F03	Floor	3	1			T8846952
Builders FirstSource, Jac	ksonville, Fl 32244					lustries, Inc. Wed Jun 15 11:18	
1-3-0		ID:2x5	HCADCLIZ	9Xgaf1n5?	'sCz6568-RQqrGMKNMa	aPp?uqomBQQXYKXspS5c	RcTHEmUqTz63gW
1-3-0		2-0-12					
							Scale = 1:28.2
1 ^{4x6} =	3x4 =	3x4 = 1.5x3 3x3	=		3x3 =	3x4 =	4x6 =
	2	3 4 5			6	7	8
o 1			\backslash				P P
6 6							1-4-0
	, I			¥	- Têr		\$
16	15	14 13	1	2	11	10	9
3x3 4x6 =	= _{3x4} =	3x4 = 1.5x3	11 30	_{K3} =	_{3x4} =	_{4x6} =	3x3
0-1-0							
0-0 <u>-4 1-6-0</u> 0-0-4 1-5-0	<u>4-0-0</u> 2-6-0	<u>10-0-12</u> 6-0-12			12-6-12 2-6-0		6-6-12 1-6-0
0-0-12	Edge,0-1-8], [14:0-1-8,Edge]						
	SPACING- 2-0-(CSI. DEFL.		n (loo)	l/defl L/d	PLATES GRI	
LOADING (psf) TCLL 40.0	Plate Grip DOL 1.0			n (loc) 2 12-13	l/defl L/d >897 360	MT20 244/	-
TCDL 10.0 BCLL 0.0	Lumber DOL 1.0 Rep Stress Incr YES			3 12-13 5 9	>589 240 n/a n/a		
BCDL 5.0	Code FBC2014/TPI2007		L) 0.0	5 5	illa illa	Weight: 86 lb	FT = 11%F, 11%E
LUMBER-		BRAC	NG-				
TOP CHORD 2x4 SP N		TOP C	HORD			ectly applied or 5-10-15 o	c purlins,
BOT CHORD 2x4 SP N WEBS 2x4 SP N		BOT C	HORD		end verticals. eiling directly applied o	r 10-0-0 oc bracing, Exc	ept:
RFACTIONS (lb/size)	17=897/0-3-8, 9=897/Mecha	anical		2-2-0 o	c bracing: 13-14,12-13		
, , , , , , , , , , , , , , , , , , ,							
		50 (lb) or less except when shown.), 2-3=-2157/0, 3-4=-2978/0, 4-5=-2978/0, 5-6	=-2847/0,	6-7=-217	76/0,		
7-8=-89	2/0	=0/2978, 12-13=0/2978, 11-12=0/2649, 10-11					
WEBS 8-10=0/	1188, 1-16=0/1196, 7-10=-10	097/0, 2-16=-1095/0, 7-11=0/688, 2-15=0/655		58/0, 3-15	5=-656/0,		
6-12=0/	385, 3-14=0/692, 5-12=-441/	92, 4-14=-299/0					

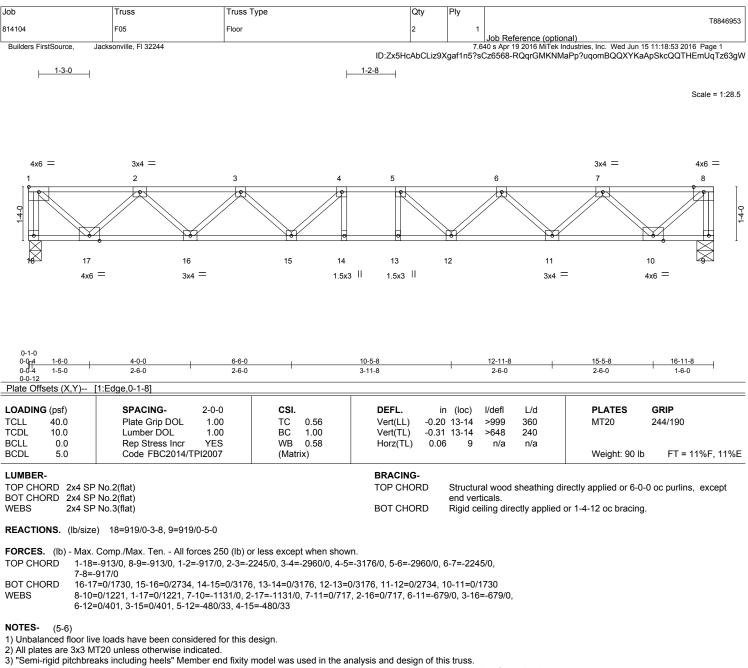
NOTES- (5-6)

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

3) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

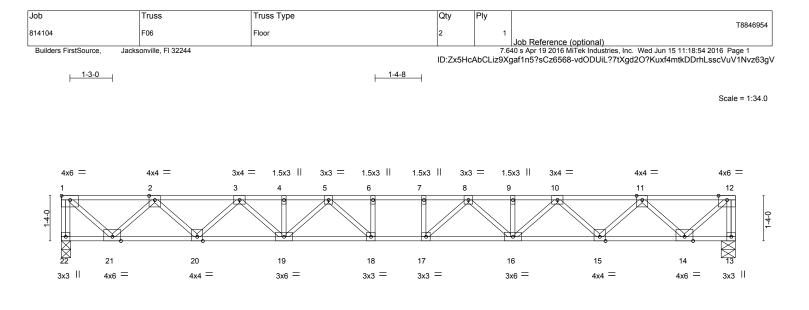
4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


5) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular

building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

6) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


4) Recommend 2x6 strongbacks, on edge, spaced at 10-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

5) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular

building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

1-6-0 Plate Offsets (X	<u>2-6-0</u> ,Y) [1:Edge,0-1-8]			11-10-8				2-6-0	1-6-0
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 40.0 TCDL 10.0	Plate Grip I Lumber DC	DL 1.00	TC 0.60 BC 0.83	Vert(LL) Vert(TL)	-0.35 17-18 -0.54 17-18	>681 >436	360 240	MT20	244/190
BCLL 0.0 BCDL 5.0	Rep Stress Code FBC	Incr YES 2014/TPI2007	WB 0.70 (Matrix)	Horz(TL)	0.09 13	n/a	n/a	Weight: 106 lb	FT = 11%F, 11%E
LUMBER-				BRACING					

15-10-8

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2(flat)	TOP CHORD	Structural wood sheathing directly applied or 5-7-1 oc purlins, except
BOT CHORD	2x4 SP No.1(flat)		end verticals.
WEBS	2x4 SP No.3(flat)	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 22=1079/0-3-4, 13=1079/0-5-0

4-0-0

ī.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD
 1-22=-1072/0, 12-13=-1072/0, 1-2=-1101/0, 2-3=-2752/0, 3-4=-3861/0, 4-5=-3861/0, 5-6=-4357/0, 6-7=-4357/0, 7-8=-4357/0, 8-9=-3861/0, 9-10=-3861/0, 10-11=-2752/0, 11-12=-1101/0

 BOT CHORD
 20-21=0/2081, 19-20=0/3395, 18-19=0/4184, 17-18=0/4357, 16-17=0/4184, 15-16=0/3395, 14-15=0/2081
- WEBS 12-14=0/1466, 1-21=0/1466, 11-14=-1363/0, 2-21=-1363/0, 11-15=0/932, 2-20=0/932, 10-15=-895/0, 3-20=-895/0, 10-16=0/633, 3-19=0/633, 8-16=-455/0, 5-19=-455/0, 8-17=-152/559, 5-18=-152/559, 6-18=-261/24, 7-17=-261/24

NOTES- (4-5)

1-6-0

1) Unbalanced floor live loads have been considered for this design.

2) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

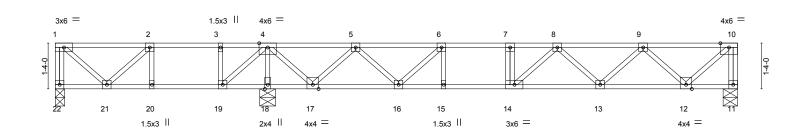
3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

5) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.

18-4-8

19-10-8


1

Job	Truss	Truss Type	Qty	Ply		
814104	F07	Floor	2	1	T8846955	
					Job Reference (optional)	
Builders FirstSource,	Builders FirstSource, Jacksonville, Fl 32244			7.640 s Apr 19 2016 MiTek Industries, Inc. Wed Jun 15 11:18:54 2016 Page 1		
			ID:Zx5HcAbCLiz9Xgaf1n5?sCz6568-vdODUiL?7tXgd2O?Kuxf4mtl7DpTLvecVuV1Nvz6			

1-9-0

Scale = 1:33.6

<u>1-6-0</u> <u>1-6-0</u>	<u> 6-2-4</u> <u> 4-8-4</u>	<u>7-6-0</u> <u>10-0-0</u> <u>1-3-12</u> <u>2-6-0</u>	<u> </u>	<u> 18-4-8 19-10-8</u> 2-6-0 1-6-0
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code FBC2014/TPI2007	CSI. TC 0.54 BC 0.91 WB 0.46 (Matrix)	DEFL. in (loc) I/defl L/d Vert(LL) -0.14 13-14 >999 360 Vert(TL) -0.21 13-14 >769 240 Horz(TL) 0.04 11 n/a n/a	PLATES GRIP MT20 244/190 Weight: 105 lb FT = 11%F, 11%E
LUMBER- TOP CHORD 2x4 SP	No.2(flat)		BRACING- TOP CHORD Structural wood sheathing dire	ectly applied or 6-0-0 oc purlins, except

BOT CHORD 2x4 SP No.2(flat) WEBS 2x4 SP No.3(flat) BOT CHORD

end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (lb/size) 22=320/0-3-4, 11=740/0-5-0, 18=1099/0-5-8 Max Grav 22=366(LC 3), 11=744(LC 7), 18=1111(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

1-22=-366/0, 10-11=-736/0, 1-2=-282/0, 2-3=-489/47, 3-4=-489/47, 4-5=-685/0, 5-6=-1655/0, 6-7=-2039/0, TOP CHORD 7-8=-2039/0, 8-9=-1689/0, 9-10=-719/0 BOT CHORD

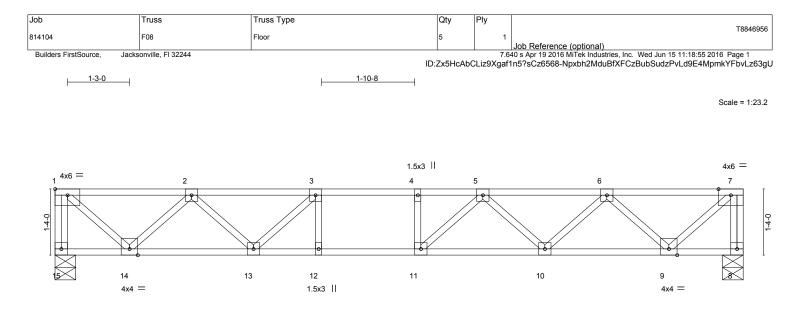
20-21=-47/489, 19-20=-47/489, 16-17=0/1304, 15-16=0/2039, 14-15=0/2039, 13-14=0/1975, 12-13=0/1357 WEBS 4-18=-1149/0, 1-21=0/375, 4-19=0/554, 2-21=-281/81, 10-12=0/957, 4-17=0/954, 9-12=-888/0, 5-17=-886/0, 9-13=0/461, 5-16=0/528, 8-13=-398/0, 6-16=-579/0, 8-14=-79/325

NOTES-(6-7)

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x3 MT20 unless otherwise indicated.

3) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.


4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

6) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

1-6-0 1-6-0 Plate Offsets (X,Y)	4-0-0 2-6-0 [1:Edge,0-1-8]		<u>9-10-8</u> 5-10-8			12-4-8 2-6-0	<u>13-10-8</u> 1-6-0
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code FBC2014/TPI2007	CSI. TC 0.58 BC 0.94 WB 0.46 (Matrix)	DEFL. in Vert(LL) -0.15 1 Vert(TL) -0.22 1 Horz(TL) 0.03 1	0-11 >999	L/d 360 240 n/a	PLATES MT20 Weight: 73 lb	GRIP 244/190 PT = 11%F, 11%E
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP			e	nd verticals.	•	ectly applied or 6-0 or 10-0-0 oc bracing	-0 oc purlins, except

2-2-0 oc bracing: 11-12.

REACTIONS. (lb/size) 15=749/0-5-0, 8=749/0-5-0

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-15=-745/0, 7-8=-742/0, 1-2=-726/0, 2-3=-1700/0, 3-4=-2069/0, 4-5=-2069/0, 5-6=-1704/0, 6-7=-725/0

BOT CHORD 13-14=0/1359, 12-13=0/2069, 11-12=0/2069, 10-11=0/1996, 9-10=0/1369

WEBS 7-9=0/965, 1-14=0/967, 6-9=-895/0, 2-14=-881/0, 6-10=0/467, 2-13=0/484, 5-10=-405/0, 3-13=-588/0, 5-11=-106/360

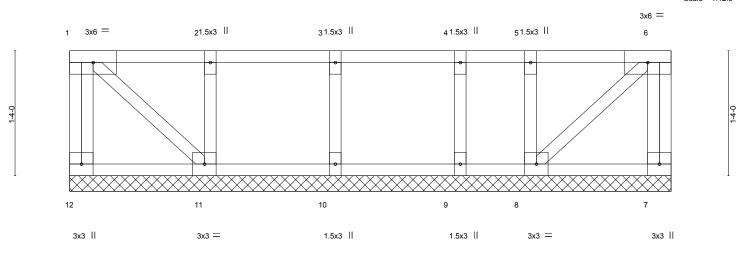
NOTES- (5-6)

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x3 MT20 unless otherwise indicated.

3) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


5) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job	Truss	Truss Type	Qty	Ply	
814104	F09	Floor Supported Gable	1	1	T8846957
		· · · · · · · · · · · · · · · · · · ·			Job Reference (optional)
Builders FirstSource, Jacksonville, Fl 32244 7.640 s Apr 19 2016 MiTek Industries, Inc. Wed Jun 15 11:18:55 2016 Page 1					

7.640 s Apr 19 2016 MiTek Industries, Inc. Wed Jun 15 11:18:55 2016 Page 1 ID:Zx5HcAbCLiz9Xgaf1n5?sCz6568-Npxbh2MduBfXFCzBubSudzP1qdNi4TTmkYFbvLz63gU

Scale = 1:12.3

⊢			<u> </u>				-1
LOADING (psf) TCLL 40.0	SPACING- 2-0-0 Plate Grip DOL 1.00	CSI. TC 0.10	DEFL. in (l Vert(LL) n/a	loc) l/defl - n/a	L/d 999	PLATES GRIP MT20 244/1	90
TCDL 10.0 BCLL 0.0	Lumber DOL 1.00 Rep Stress Incr YES	BC 0.01 WB 0.03	Vert(TL) n/a Horz(TL) -0.00	- n/a 7 n/a	999 n/a	WH20 244/1	
BCDL 5.0	Code FBC2014/TPI2007	(Matrix)	1012(12) 0.00	7 11/a	n/a	Weight: 37 lb F	T = 11%F, 11%E
LUMBER-			BRACING-				

TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.2(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat) TOP CHORD

Structural wood sheathing directly applied or 6-5-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 6-5-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 12, 7, 11, 10, 9, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(6-7)

1) Gable requires continuous bottom chord bearing.

2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

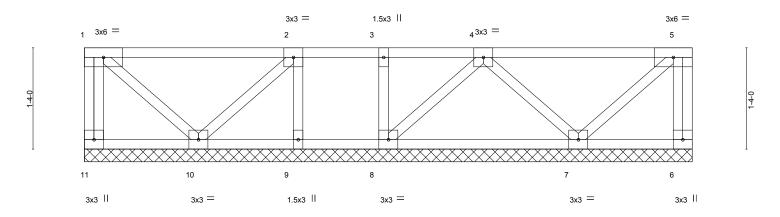
3) Gable studs spaced at 1-4-0 oc.

4) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular

building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code. 7) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	
814104	F10	Floor Supported Gable	1	1	T8846958
011101					Job Reference (optional)
Builders FirstSource,	Jacksonville, FI 32244			7.6	640 s Apr 19 2016 MiTek Industries, Inc. Wed Jun 15 11:18:56 2016 Page 1

7.640 s Apr 19 2016 MiTek Industries, Inc. Wed Jun 15 11:18:56 2016 Page 1 ID:Zx5HcAbCLiz9Xgaf1n5?sCz6568-r?V_vONGfVnNsMYNRJz79By7p1j9pwKvzC_8Rnz63gT

Scale = 1:15.2

⊢		8-0-0		
		8-0-0		
LOADING (psf)	SPACING- 2-0-0	CSI. DEFL.	in (loc) l/defl L/d	PLATES GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.40 Vert(LL)	n/a - n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.06 Vert(TL)	n/a - n/a 999	
BCLL 0.0	Rep Stress Incr YES	WB 0.06 Horz(TL)	0.00 6 n/a n/a	
BCDL 5.0	Code FBC2014/TPI2007	(Matrix)		Weight: 46 lb FT = 11%F, 11%E
		BRACING-		

LUMBER-

TOP CHORD2x4 SP No.2(flat)BOT CHORD2x4 SP No.2(flat)WEBS2x4 SP No.3(flat)

BRACING-TOP CHORD BOT CHORD

end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

Structural wood sheathing directly applied or 8-0-0 oc purlins, except

REACTIONS. All bearings 8-0-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 11, 6, 7, 10, 8 except 9=266(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-9=-259/0

NOTES- (4-5)

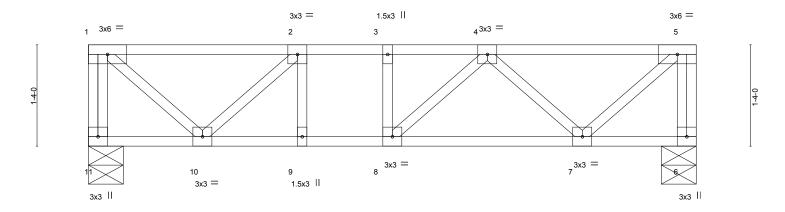
1) Gable requires continuous bottom chord bearing.

2) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular

building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.



1-0-0

1-3-0

Scale = 1:15.2

	<u> </u>			6-6-0 5-0-0			<u> </u>	
LOADING (psf) TCLL 40.0	Plate Grip DOL	2-0-0 1.00	CSI. TC 0.45	DEFL. Vert(LL)	-8 >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0		1.00 YES	BC 0.31 WB 0.23	Vert(TL) Horz(TL)	'-8 >999 6 n/a	240 n/a		
BCDL 5.0	Code FBC2014	/TPI2007	(Matrix)		 		Weight: 46 lb	FT = 11%F, 11%E

LUMBER-

TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.2(flat) 2x4 SP No.3(flat) WEBS

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 11=426/0-5-8, 6=426/0-5-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-11=-420/0, 5-6=-421/0, 1-2=-354/0, 2-3=-673/0, 3-4=-673/0, 4-5=-358/0

9-10=0/673, 8-9=0/673, 7-8=0/661 BOT CHORD

5-7=0/477, 1-10=0/472, 4-7=-422/0, 2-10=-433/0 WEBS

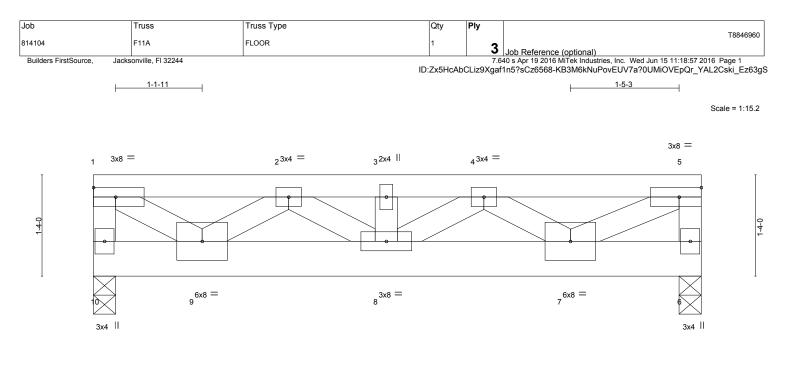
NOTES-(4-5)

1) Unbalanced floor live loads have been considered for this design.

2) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.


4) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular

building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

5) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Lesgin value use use only will will will reme connections. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		6-3-5 6-3-5					
-OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (lo	oc) l/defl	L/d	PLATES GRIP	
FCLL 40.0	Plate Grip DOL 1.00	TC 0.64	Vert(LL) -0.05	8 >999	360	MT20 244/190	
TCDL 10.0	Lumber DOL 1.00	BC 0.85	Vert(TL) -0.08	8 >999	240		
BCLL 0.0	Rep Stress Incr NO	WB 0.84	Horz(TL) 0.02	6 n/a	n/a		
BCDL 5.0	Code FBC2014/TPI2007	(Matrix)				Weight: 135 lb FT = 11%	

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 WEBS

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 10=4694/0-3-8, 6=4694/0-3-8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-10=-4111/0, 5-6=-4082/0, 1-2=-4417/0, 2-3=-8747/0, 3-4=-8747/0, 4-5=-5126/0

BOT CHORD 9-10=0/493, 8-9=0/7937, 7-8=0/8456, 6-7=0/592

1-9=0/4895, 2-9=-4601/0, 2-8=0/1010, 3-8=-332/0, 4-8=0/362, 4-7=-4352/0, 5-7=0/5306 WEBS

NOTES- (5-6)

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 2 rows staggered at 0-4-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply

connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

 3) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

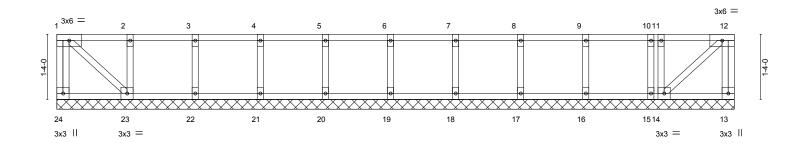
5) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

6) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 6-10-208(F=-198), 1-5=-1010(F=-910)



Job	Truss	Truss Type	Qty	Ply	
814104	F12	GABLE	1	1	T8846961
			-		Job Reference (optional)
Builders FirstSource, Jac	ksonville, Fl 32244	40 s Apr 19 2016 MiTek Industries, Inc. Wed Jun 15 11:18:57 2016 Page 1			

7.640 s Apr 19 2016 MiTek Industries, Inc. Wed Jun 15 11:18:57 2016 Page 1 ID:Zx5HcAbCLiz9Xgaf1n5?sCz6568-KB3M6kNuPovEUV7a?0UMiOVNJQ2AYNy2Cski_Ez63gS

Scale = 1:23.6

	1-4-0	2-8-0	4-0-0	5-4-0	6-8-0	8-0-0	9-4-0		10-8-0	12-0-0 1	<u>3-4-0 13-10-8</u>
	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1	1-4-0	1-4-0 1	-4-0 0-6-8
LOAD	NG (psf)	SPACING	- 2-0-0	CSI		DEFL.	in (loc)) l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip	DOL 1.00	TC	0.10	Vert(LL)	n/a -	n/a	999	MT20	244/190
TCDL	10.0	Lumber D	OL 1.00	BC	0.01	Vert(TL)	n/a -	n/a	999		
BCLL	0.0	Rep Stres	s Incr YES	WB	0.04	Horz(TL)	-0.00 13	3 n/a	n/a		
BCDL	5.0	Code FBC	C2014/TPI2007	(Ma	trix)					Weight: 69 lb	FT = 11%F, 11%E

LUMBER-

TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.2(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat) BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 10-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 23-24,13-14.

REACTIONS. All bearings 13-10-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 13, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

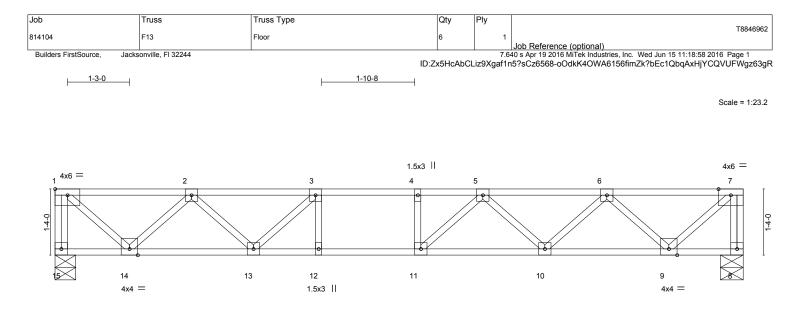
NOTES-(7-8)

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.


- 5) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

- 7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

1-6-0	2-6-0	5-10-8				2-6-0	1-6-0	
Plate Offsets (X,Y)	[1:Edge,0-1-8]							
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP	
TCLL 40.0	Plate Grip DOL 1.00	TC 0.58	Vert(LL) -0.1	5 10-11 >999	360	MT20	244/190	
TCDL 10.0	Lumber DOL 1.00	BC 0.94	Vert(TL) -0.2	2 10-11 >757	240			
BCLL 0.0	Rep Stress Incr YES	WB 0.46	Horz(TL) 0.0)3 8 n/a	n/a			
BCDL 5.0	Code FBC2014/TPI2007	(Matrix)				Weight: 73 lb	FT = 11%F, 11%E	
LUMBER-			BRACING-					
TOP CHORD 2x4 SI BOT CHORD 2x4 SI			TOP CHORD	Structural wood s end verticals.	sheathing dire	ectly applied or 6-0-	0 oc purlins, except	
WEBS 2x4 SP No.3(flat)			BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing, Except:				

9-10-8

REACTIONS. (lb/size) 15=749/0-5-0, 8=749/0-5-8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

4-0-0

TOP CHORD 1-15=-745/0, 7-8=-742/0, 1-2=-726/0, 2-3=-1700/0, 3-4=-2069/0, 4-5=-2069/0, 5-6=-1704/0, 6-7=-725/0

i.

BOT CHORD 13-14=0/1359, 12-13=0/2069, 11-12=0/2069, 10-11=0/1996, 9-10=0/1369

WEBS 7-9=0/965, 1-14=0/967, 6-9=-895/0, 2-14=-881/0, 6-10=0/467, 2-13=0/484, 5-10=-405/0, 3-13=-588/0, 5-11=-106/360

NOTES- (5-6)

1-6-0

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x3 MT20 unless otherwise indicated.

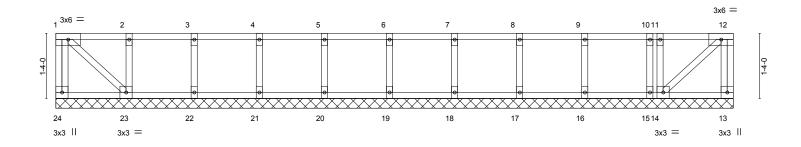
3) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

6) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.

12-4-8


2-2-0 oc bracing: 11-12.

13-10-8

Job	Truss	Truss Type	Qty	Ply	
814104	F15	Floor Supported Gable	1	1	T8846963
		· · · · · · · · · · · · · · · · · · ·			Job Reference (optional)
Builders FirstSource,	acksonville, FI 32244			7.6	40 s Apr 19 2016 MiTek Industries, Inc. Wed Jun 15 11:18:58 2016 Page 1

7.640 s Apr 19 2016 MiTek Industries, Inc. Wed Jun 15 11:18:58 2016 Page 1 ID:Zx5HcAbCLiz9Xgaf1n5?sCz6568-oOdkK4OWA6156fimZk?bEc1Y3qOPHqBCQVUFWgz63gR

Scale = 1:23.6

LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.10 BC 0.01 WB 0.04	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(TL) n/a - n/a 999 Horz(TL) - 0.00 13 n/a n/a	PLATES GRIP MT20 244/190
BCDL 5.0	Code FBC2014/TPI2007	(Matrix)		Weight: 69 lb FT = 11%F, 11%E

12 10 0

BOT CHORD 2x4 SP No.2(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat) BOT CHORD

end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 23-24,13-14.

REACTIONS. All bearings 13-10-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 13, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(7-8)

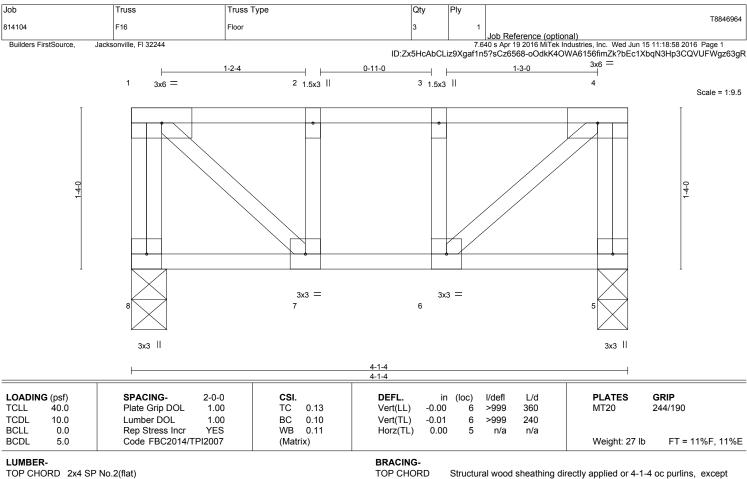
1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.


6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.2(flat) 2x4 SP No.3(flat) WEBS

TOP CHORD

end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

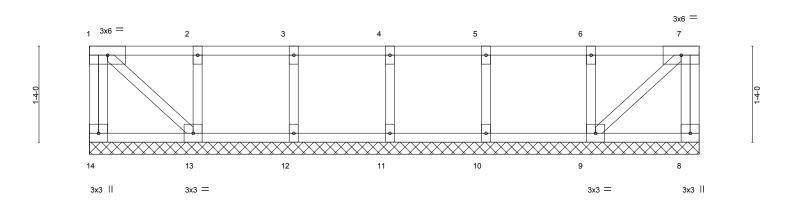
REACTIONS. (lb/size) 8=212/0-3-8, 5=212/0-3-0

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(4-5)

1) Unbalanced floor live loads have been considered for this design.

- 2) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 5) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	
814104	F17	Floor Supported Gable	1	1	T8846965
		· · · · · · · · · · · · · · · · · · ·			Job Reference (optional)
Builders FirstSource, Jack	sonville, FI 32244			7.6	40 s Apr 19 2016 MiTek Industries, Inc. Wed Jun 15 11:18:59 2016 Page 1

7.640 s Apr 19 2016 Mittek Industries, Inc. Wed Jun 15 11:18:59 2016 Page 1 ID:Zx5HcAbCLiz9Xgaf1n5?sCz6568-GaB6XPP8xP9yjpHy7RXqnpajhEkd0HQLf9Do26z63gQ

Scale: 3/4"=1'

		<u></u>		
LOADING (psf) TCLL 40.0		CSI. DEFL TC 0.11 Vert(I		L/d PLATES GRIP 199 MT20 244/190
TCDL 10.0 BCLL 0.0	Lumber DOL 1.00	BC 0.01 Vert(WB 0.04 Horz(, TL) n/a - n/a S	199 n/a
BCDL 5.0		(Matrix)		Weight: 44 lb FT = 11%F, 11%E
LUMBER-	I	BRAC	ING-	i

TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.2(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)

TOP CHORD

Structural wood sheathing directly applied or 8-5-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 8-5-8.

(Ib) - Max Grav All reactions 250 lb or less at joint(s) 14, 8, 13, 12, 11, 10, 9

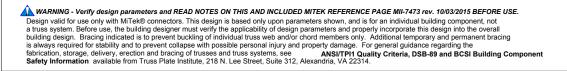
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(7-8)

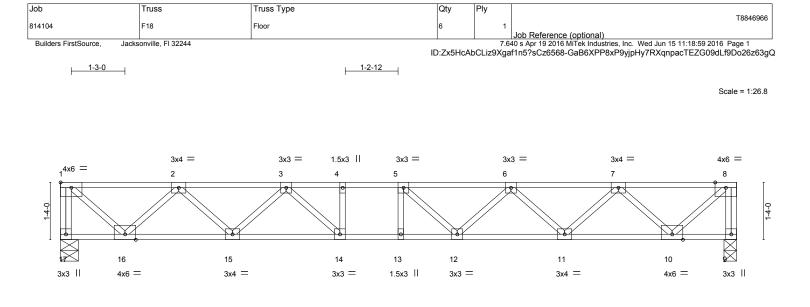
1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).


4) Gable studs spaced at 1-4-0 oc.

5) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.


6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

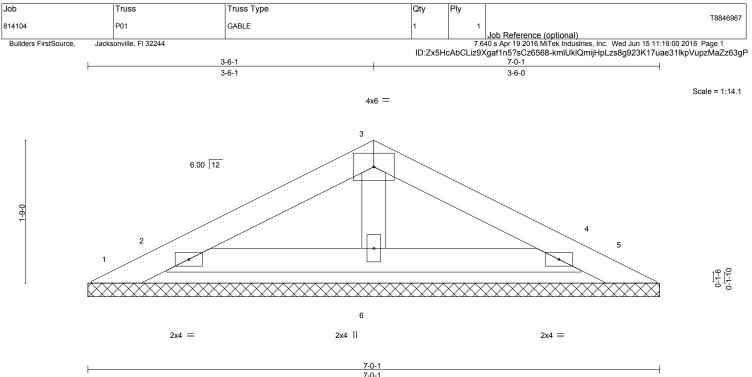
1-6-0 1-6-0	4-0-0 2-6-0	<u>9-2-12</u> 5-2-12			8-12 6-0		14-2-12 2-6-0	15-8-12 1-6-0
Plate Offsets (X,Y) ['	1.Edge,0-1-8							
LOADING (psf)	SPACING- 2-0	0-0 CSI .	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.0	00 TC 0.57	Vert(LL) -	-0.16 12-13	>999 3	60	MT20	244/190
TCDL 10.0	Lumber DOL 1.0	00 BC 0.74	Vert(TL) -	-0.24 12-13	>766 2	40		
BCLL 0.0	Rep Stress Incr YE	ES WB 0.54	Horz(TL)	0.04 9	n/a	n/a		
BCDL 5.0	Code FBC2014/TPI200	07 (Matrix)					Weight: 83 lb	FT = 11%F, 11%E
BCDL 5.0	Code FBC2014/TPI200	07 (Matrix)	BRACING-				Weight: 83 lb	FT = 119

TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 17=851/0-5-0, 9=851/0-3-8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


- TOP CHORD 1-17=-847/0, 8-9=-845/0, 1-2=-845/0, 2-3=-2015/0, 3-4=-2698/0, 4-5=-2698/0, 5-6=-2605/0, 6-7=-2029/0, 7-8=-840/0
- BOT CHORD 15-16=0/1587, 14-15=0/2435, 13-14=0/2698, 12-13=0/2698, 11-12=0/2454, 10-11=0/1582
- WEBS 8-10=0/1119, 1-16=0/1125, 7-10=-1032/0, 2-16=-1031/0, 7-11=0/622, 2-15=0/596, 6-11=-591/0, 3-15=-585/0, 6-12=0/314, 3-14=0/541, 5-12=-341/112

NOTES-(4-5)

- 1) Unbalanced floor live loads have been considered for this design.
- 2) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular
- building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 5) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.

				7-0-1				
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.25	TC 0.10	Vert(LL)	n/a -	n/a	999	MT20 244/190
TCDL	7.0	Lumber DOL 1.25	BC 0.06	Vert(TL)	n/a -	n/a	999	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.03	Horz(TL)	0.00 4	n/a	n/a	
BCDL	10.0	Code FBC2014/TPI2007	(Matrix)					Weight: 21 lb FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 7-0-1. (lb) - Max Horz 1=23(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 2, 4, 6

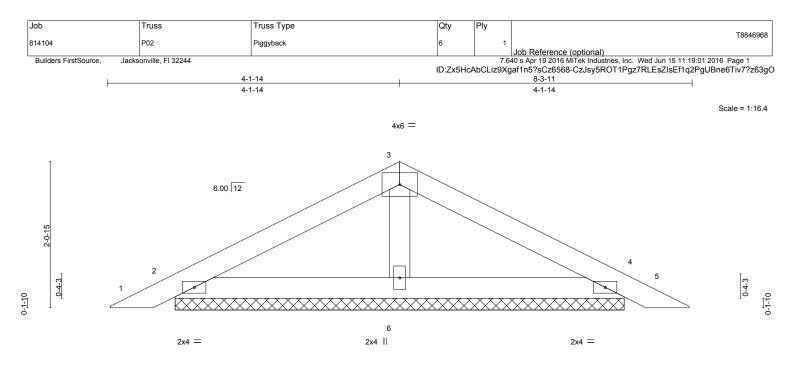
Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (11-12)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 1-4-0 oc.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4, 6.
- 9) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 11) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 12) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			<u>8-3-11</u> 8-3-11					—
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.25	CSI. TC 0.19	DEFL. Vert(LL)	in (loc) 0.01 5	l/defl n/r	L/d 120	PLATES MT20	GRIP 244/190
TCDL 7.0 BCLL 0.0 *	Lumber DOL 1.25	BC 0.10 WB 0.05	Vert(TL) Horz(TL)	0.01 5 0.00 4	n/r	120	WILLO	244/100
BCDL 10.0	Rep Stress Incr YES Code FBC2014/TPI2007	(Matrix)	HOIZ(IL)	0.00 4	n/a	n/a	Weight: 25 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

OTHERS 2x4 SP No.3 **REACTIONS.** (Ib/size) 2=155/6-4-9, 4=155/6-4-9, 6=229/6-4-9 Max Horz 2=-28(LC 10)

Max Uplift2=-55(LC 12), 4=-60(LC 13), 6=-28(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

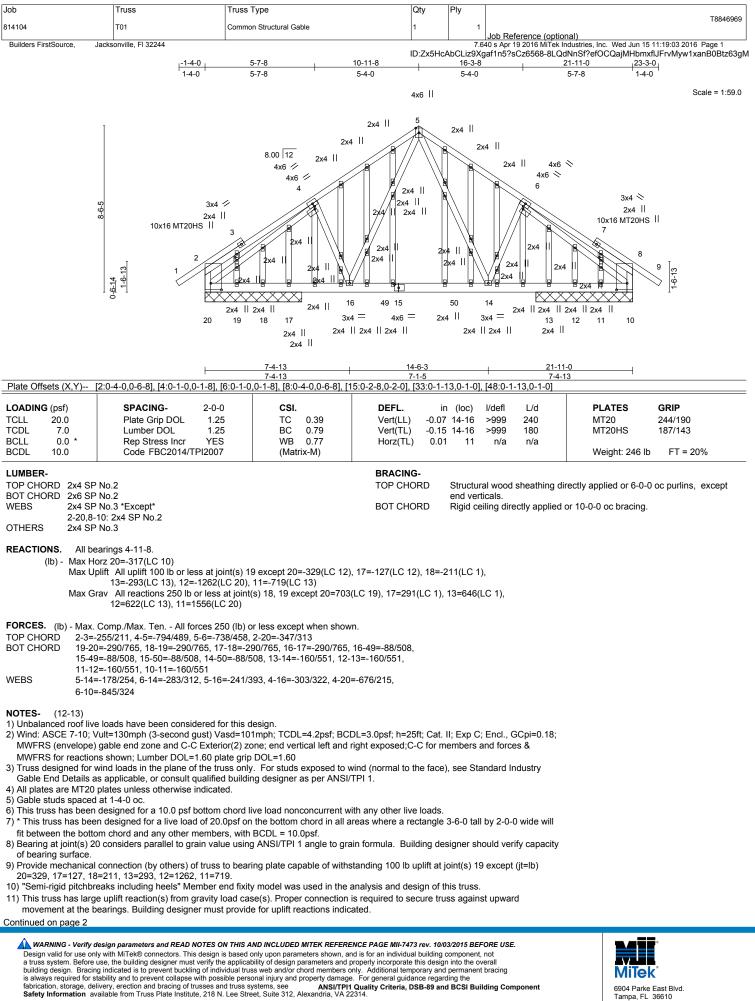
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.

7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

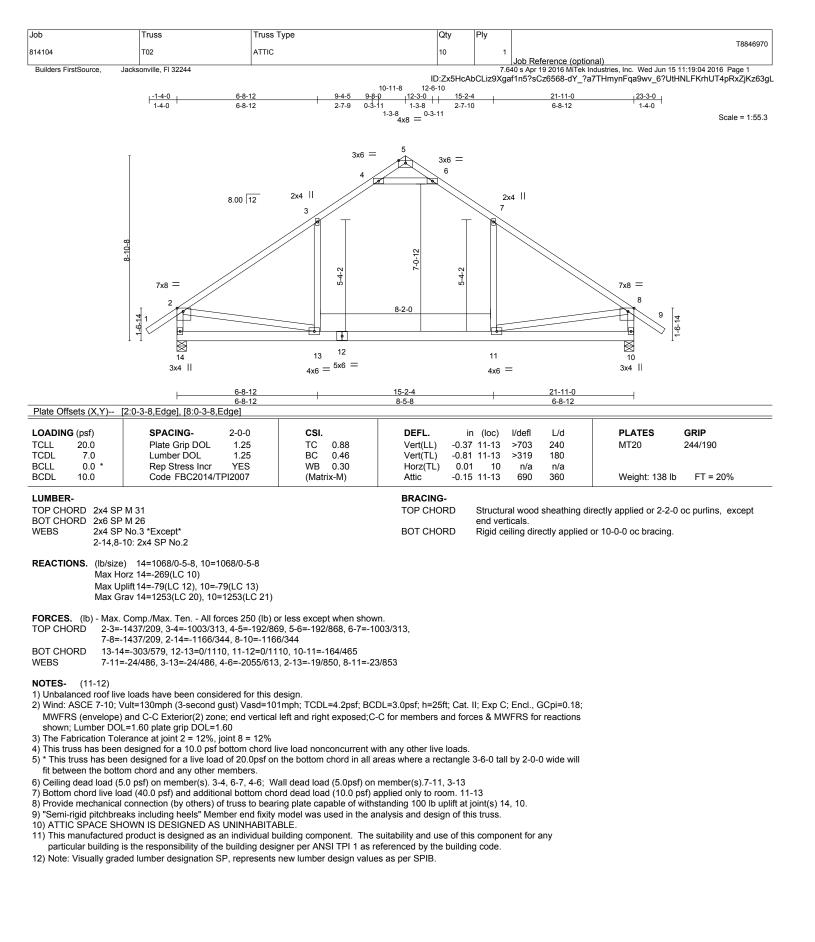

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

9) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

10) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.

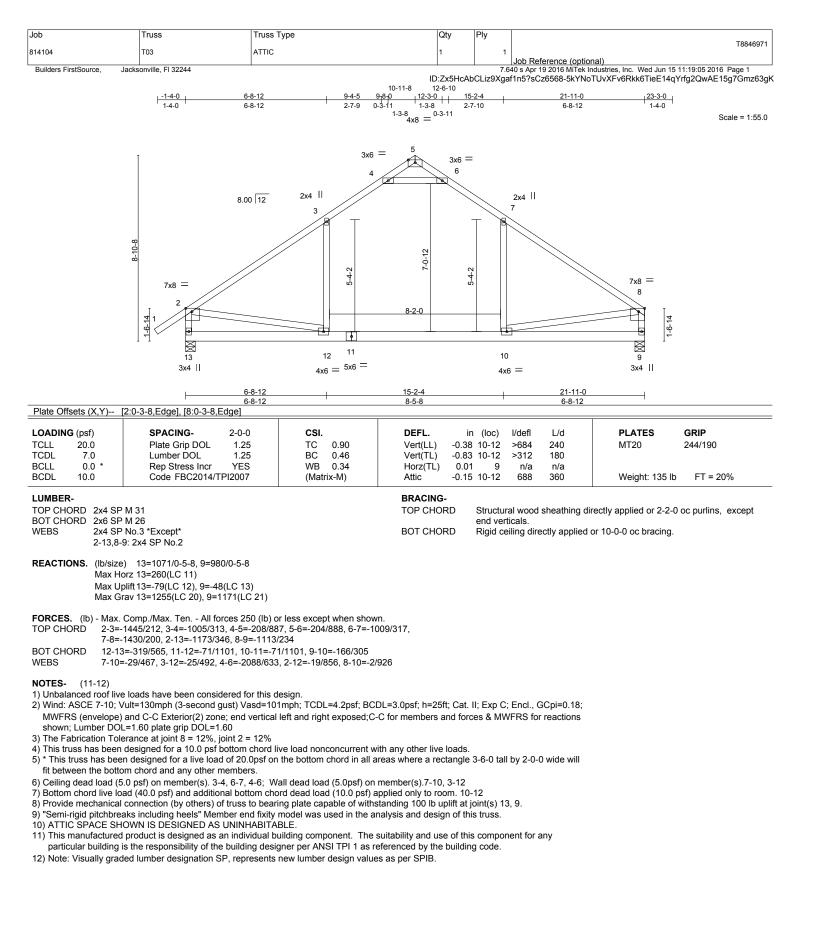
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

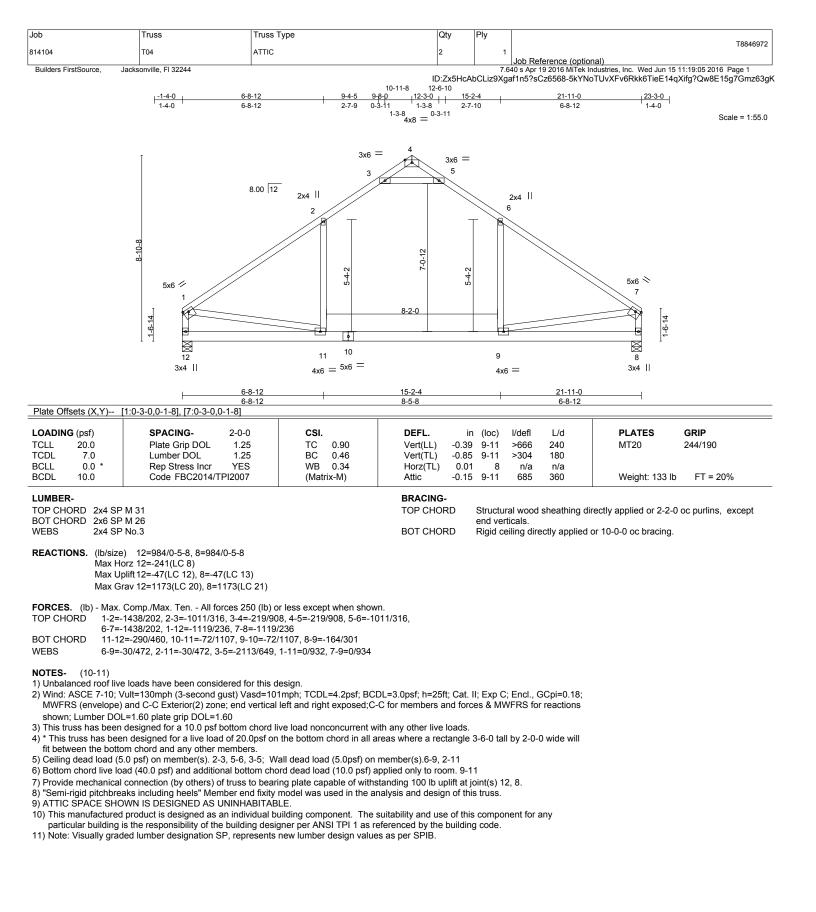
6904 Parke East Blvd Tampa, FL 36610

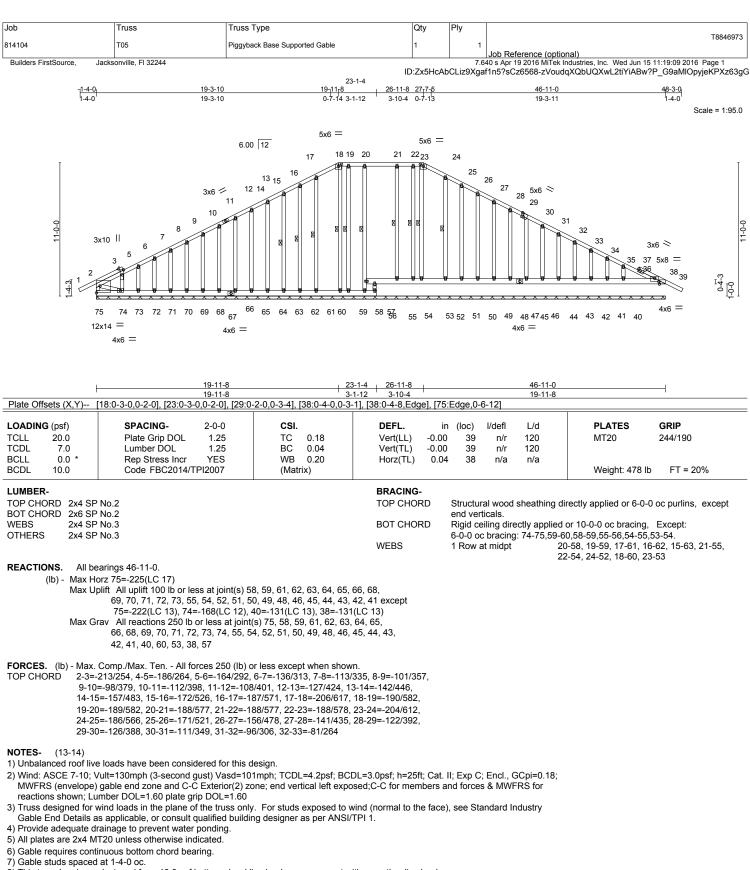

Job	Truss	Truss Type	Qty	Ply	
814104	T01	Common Structural Gable	1	1	T8846969
					Job Reference (optional)
Builders EirstSource Jacks	onville El 32244				10 s Apr 19 2016 MiTek Industries Inc. Wed Jun 15 11:19:03 2016 Page 2

7.640 s Apr 19 2016 MTek Industries, Inc. Wed Jun 15 11:19:03 2016 Page 2
 12) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building code.
 13) Note: Visually graded lumber designation SP. response to a suitability of the building code.

13) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

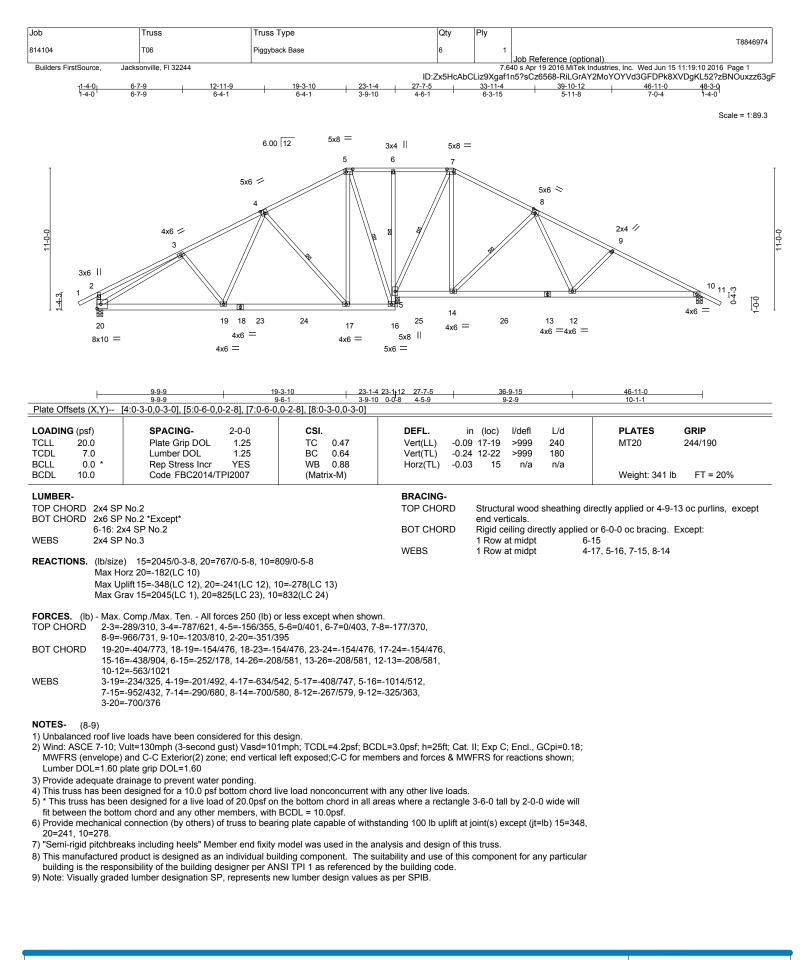
10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 55, 54, 52, 51, 50, 49, 48, 46, 45, 44, 43, 42, 41 except (jt=lb) 75=222, 74=168, 40=131, 38=131.

11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 55, 54, 52, 51, 50, 49, 48, 46, 45, 44, 43, 42,

ContfluetPofipage 2

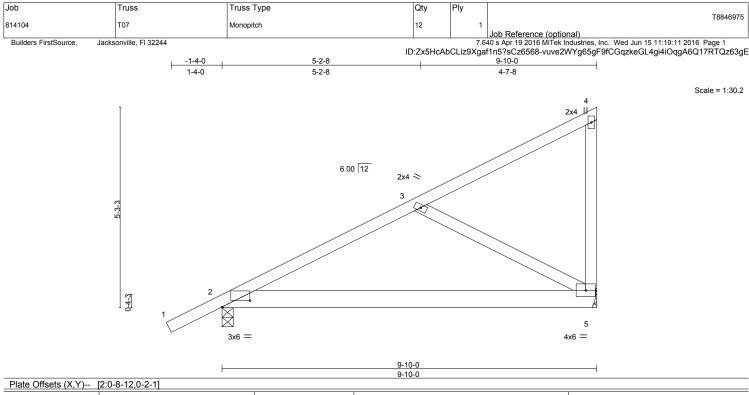
🔔 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	
814104	T05	Piggyback Base Supported Gable	1	1	T8846973
					Job Reference (optional)
Builders FirstSource, Jacks	onville, FI 32244			7.6	40 s Apr 19 2016 MiTek Industries, Inc. Wed Jun 15 11:19:09 2016 Page 2
		ID	:Zx5HcAb	CLiz9Xga	f1n5?sCz6568-zVoudqXQbUQXwL2tiYiABw?P_G9aMlOpyjeKPXz63gG


NOTES- (13-14)

12) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

13) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code. 14) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.49	Vert(LL)	0.24	5-7	>481	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.53	Vert(TL)	-0.23	5-7	>500	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.18	Horz(TL)	-0.01	5	n/a	n/a		
BCDL	10.0	Code FBC2014/T	PI2007	(Mati	ix-M)						Weight: 56 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.3

BRACING-

 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 7-6-15 oc bracing.

REACTIONS. (Ib/size) 2=439/0-3-8, 5=353/Mechanical Max Horz 2=196(LC 12)

Max Uplift2=-161(LC 9), 5=-207(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-372/276

BOT CHORD	2-5=-513/316
WEBS	3-5=-341/542

NOTES- (7-8)

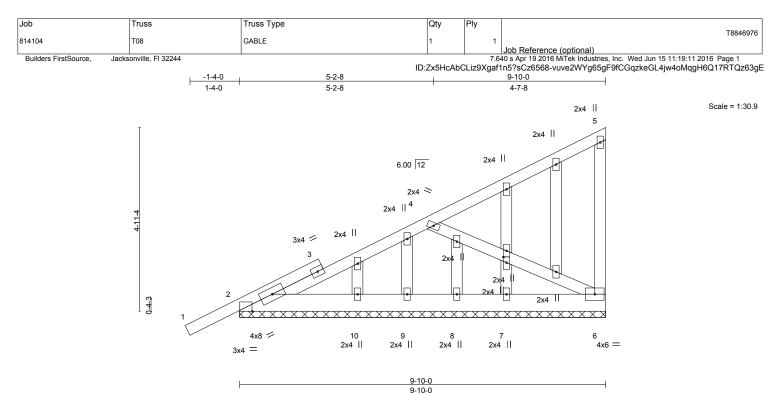
 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=161, 5=207.


6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

8) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

OADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.28	Vert(LL)	0.00	1	n/r	120	MT20	244/190
CDL	7.0	Lumber DOL	1.25	BC	0.14	Vert(TL)	0.01	1	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.17	Horz(TL)	0.00	6	n/a	n/a		
BCDL	10.0	Code FBC2014/T	PI2007	(Matr	ix)						Weight: 72 lb	FT = 20%

LUMBER-

TOP CHORD	2x4 SP No.2
BOT CHORD	2x6 SP No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 9-10-0.

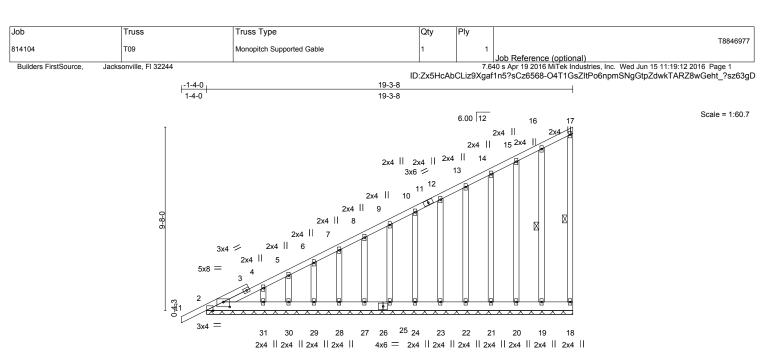
(lb) - Max Horz 2=184(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 8, 9, 10 except 2=-104(LC 12), 6=-159(LC 12) Max Grav All reactions 250 lb or less at joint(s) 7, 8, 9, 10 except 2=335(LC 1), 6=268(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-392/202, 3-4=-354/215

BOT CHORD	2-10=-430/319, 9-10=-430/319, 8-9=-430/319, 7-8=-430/319, 6-7=-430/319
WEBS	4-6=-344/462


NOTES-(9-10)

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 1-4-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 9, 10 except (jt=lb) 2=104, 6=159.
- 8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
- 9) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

10) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2x4 || 2x4 ||

19-3-8

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.25	TC 0.15	Vert(LL) 0.00 1 n/r 120	MT20 244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.03	Vert(TL) 0.00 1 n/r 120	
3CLL 0.0 *	Rep Stress Incr YES	WB 0.08	Horz(TL) -0.00 18 n/a n/a	
3CDL 10.0	Code FBC2014/TPI2007	(Matrix)		Weight: 175 lb FT = 20%

LOWDER-			DIVAOII
TOP CHORD	2x4 SP No.2	1	TOP CH
BOT CHORD	2x6 SP No.2		
WEBS	2x4 SP No.3	E	BOT CH
OTHERS	2x4 SP No.3	l.	WEBS

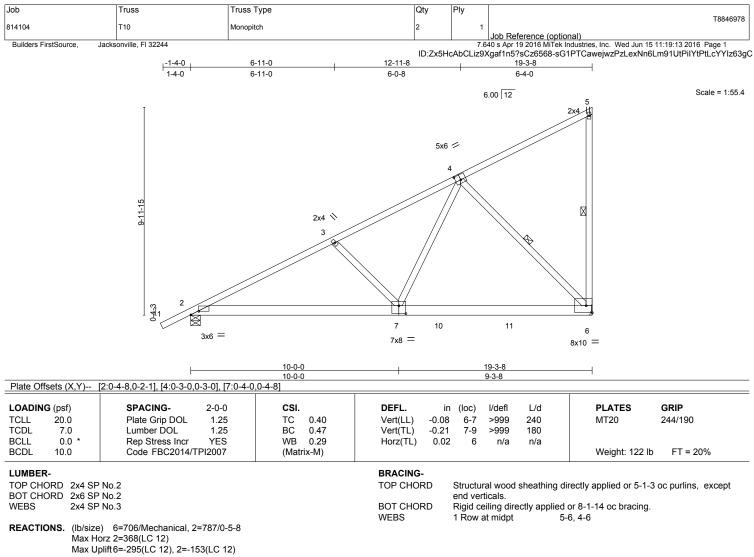
OP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 17-18, 16-19

REACTIONS. All bearings 19-3-8.

(lb) - Max Horz 2=512(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 18, 25, 27, 28, 29, 30, 31, 24, 23, 22, 21, 20, 19 Max Grav All reactions 250 lb or less at joint(s) 18, 2, 25, 27, 28, 29, 30, 31, 24, 23, 22, 21, 20, 19

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


TOP CHORD 2-3=-533/185, 3-4=-528/197, 4-5=-504/176, 5-6=-458/163, 6-7=-415/148, 7-8=-372/133, 8-9=-329/118, 9-10=-286/103

NOTES-(9-10)

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry
- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 1-4-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 25, 27, 28, 29, 30, 31, 24, 23, 22, 21, 20, 19,
- 8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
- 9) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 10) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Max Grav 6=713(LC 19), 2=787(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1094/361, 3-4=-871/277

- BOT CHORD 2-7=-760/938, 7-10=-403/491, 10-11=-403/491, 6-11=-403/491
- WEBS 3-7=-325/366, 4-7=-252/594, 4-6=-695/570

NOTES- (7-8)

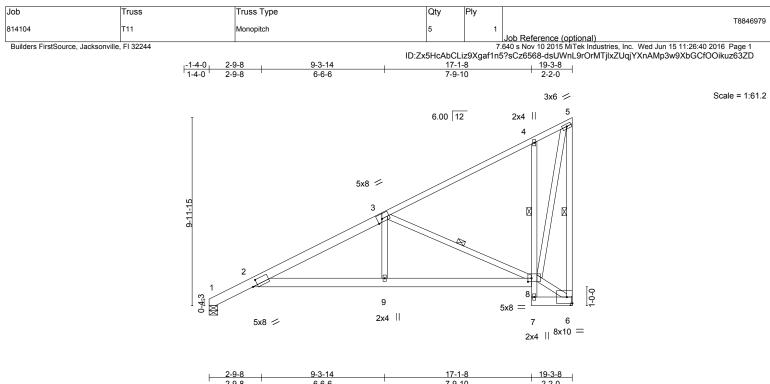
 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate orip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Refer to girder(s) for truss to truss connections.

 Forvide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=295, 2=153.


6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular

building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

	2-9-8	0-0-0	7-9-	-10	2-2-0		
Plate Offsets (X,Y)	[2:0-3-2,0-3-7], [3:0-3-0,Edge], [8:0-2-4,	0-2-4]					
CADING (psf) "CLL 20.0 "CDL 7.0 3CLL 0.0 * 3CDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2014/TPI2007	CSI. TC 0.65 BC 0.67 WB 0.82 (Matrix-M)			L/d 240 180 n/a	PLATES GRIP MT20 244/190 Weight: 139 lb FT = 20%	
JMBER-			BRACING-				
OP CHORD 2x4 S	P No.2 *Except* x6 SP M 26		TOP CHORD	Structural wood end verticals.	sheathing dire	ectly applied or 5-2-3 oc purlins, excep	
BOT CHORD 2x6 SP No.2 *Except* 4-7: 2x4 SP No.3			BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing. Except: 1 Row at midpt 4-8			
/EBS 2x4 S	P No.3		WEBS	1 Row at midpt	5-	6, 3-8	
					ring truss eree	bilizers and required cross bracing ction, in accordance with Stabilizer	

REACTIONS. (lb/size) 6=668/Mechanical, 1=757/0-5-8 (min. 0-1-9) Max Horz 1=347(LC 12) Max Uplift 6=-280(LC 12), 1=-127(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-370/0, 2-3=-1111/412, 3-4=-304/0, 5-6=-628/487

- BOT CHORD 2-9=-778/987, 8-9=-779/997, 4-8=-338/413
- 3-9=-27/393, 3-8=-894/690, 5-8=-622/766 WEBS

NOTES-(8-9)

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

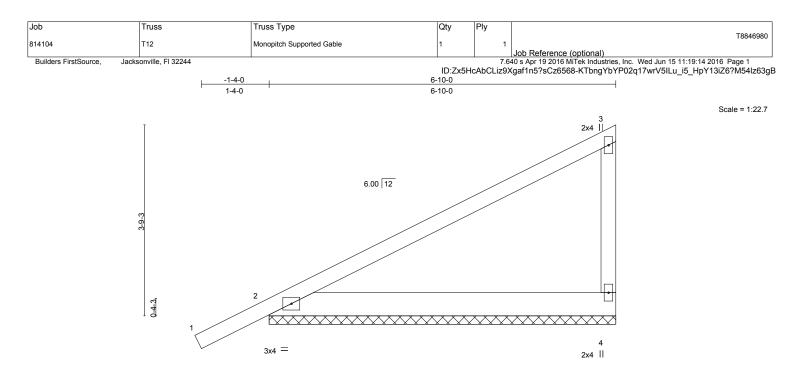
2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 280 lb uplift at joint 6 and 127 lb uplift at joint 1. 7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.


8) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

9) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl	L/d PLAT	TES GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.87	Vert(LL) -0.02 1 n/r	120 MT20) 244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.24	Vert(TL) 0.06 1 n/r	120	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(TL) 0.00 n/a	n/a	
BCDL 10.0	Code FBC2014/TPI2007	(Matrix)		Weig	ht: 34 lb FT = 20%

TOP CHORD

BOT CHORD

end verticals.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2

WEBS 2x4 SP No.3

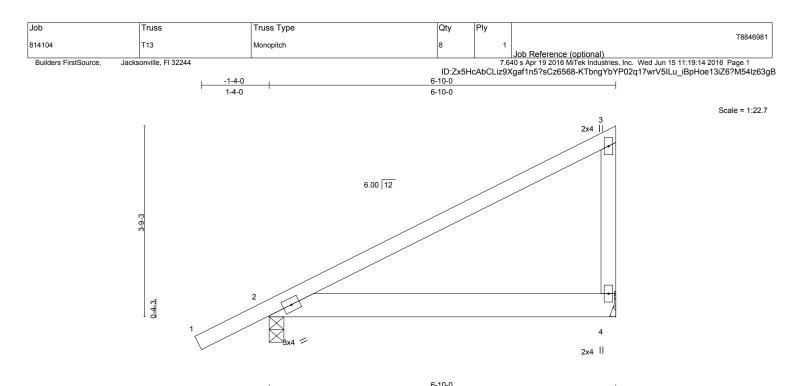
REACTIONS. (lb/size) 4=240/6-10-0, 2=331/6-10-0 Max Horz 2=141(LC 12) Max Uplift4=-99(LC 12), 2=-76(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 3-4=-173/270

NOTES-(7-8)

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.


- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
- 7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 8) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Structural wood sheathing directly applied or 2-2-0 oc purlins, except

Rigid ceiling directly applied or 10-0-0 oc bracing.

	6-10-0							
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.50	Vert(LL)	0.05 4-6	>999	240	MT20	244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.30	Vert(TL)	-0.09 4-6	>898	180		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(TL)	0.00 4	n/a	n/a		
BCDL 10.0	Code FBC2014/TPI2007	(Matrix-M)					Weight: 34 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=240/Mechanical, 2=331/0-3-8 Max Horz 2=141(LC 12)

Max Uplift4=-100(LC 12), 2=-75(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

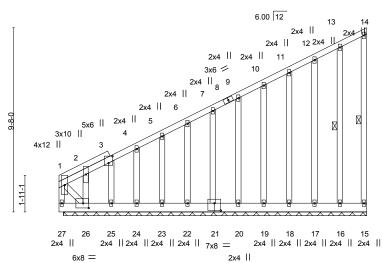
NOTES- (7-8)

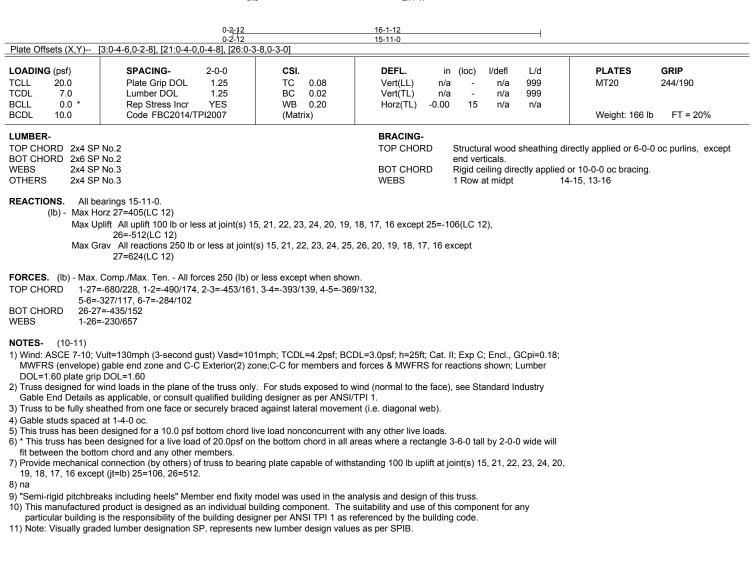
- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

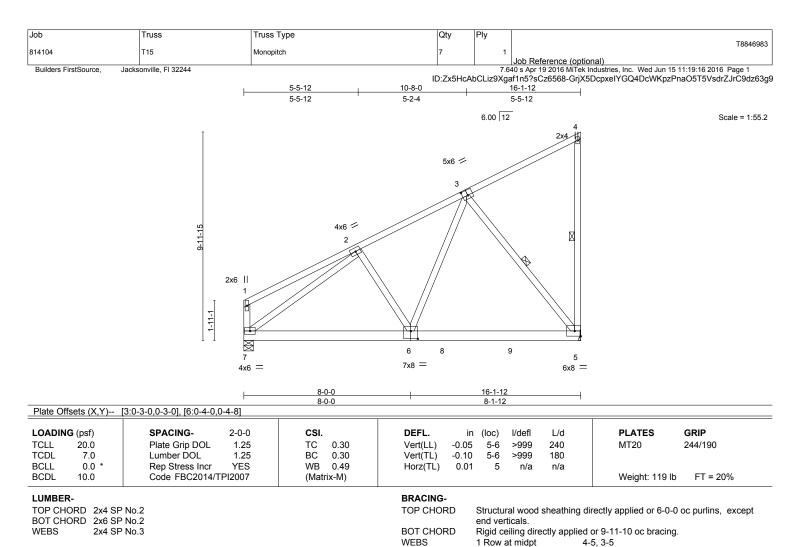
6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.


- 7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 8) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.



ID:Zx5HcAbCLiz9Xgaf1n5?sCz6568-of99uubAAKAheGV13opaQBES4hCCmTviKf5fcBz63gA

16-1-12 16-1-12



Scale = 1:60.4

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 5=587/Mechanical, 7=587/0-5-8 Max Horz 7=288(LC 12) Max Uplift5=-275(LC 12), 7=-73(LC 12)

Max Grav 5=603(LC 19), 7=587(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-547/174

BOT CHORD 6-7=-548/511, 6-8=-306/317, 8-9=-306/317, 5-9=-306/317

WEBS 2-6=-141/310, 3-6=-214/391, 3-5=-508/492, 2-7=-570/55

NOTES- (7-8)

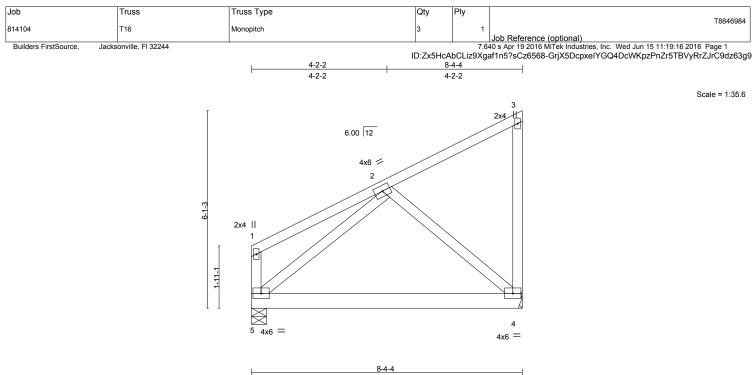
 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb)


5=275. 6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular

building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

	F		8-4-4	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl	L/d PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.33	Vert(LL) -0.05 4-5 >999	240 MT20 244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.29	Vert(TL) -0.12 4-5 >796	180
BCLL 0.0 *	Rep Stress Incr YES	WB 0.11	Horz(TL) -0.00 4 n/a	n/a
BCDL 10.0	Code FBC2014/TPI2007	(Matrix-M)		Weight: 58 lb FT = 20%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 WEBS

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=298/Mechanical, 5=298/0-5-8

Max Horz 5=146(LC 12)

Max Uplift 4=-154(LC 12), 5=-23(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. BOT CHORD 4-5=-287/160 WEBS 2-4=-202/374

NOTES-(7-8)

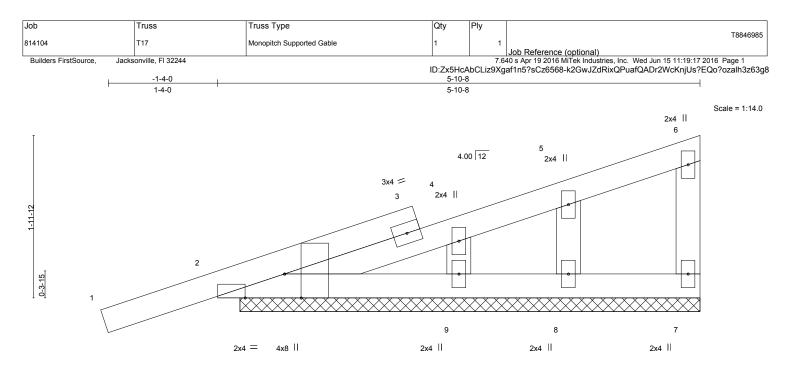
1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 4=154


6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

8) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	0-3-4 0-3-4 [2:0-3-8,Edge], [2:0-5-12,Edge]		<u>5-10-8</u> 5-7-4	
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2014/TPI2007	CSI. TC 0.13 BC 0.07 WB 0.04 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 1 n/r 120 Vert(TL) -0.00 1 n/r 120 Horz(TL) 0.00 1 n/r 120	PLATES GRIP MT20 244/190 Weight: 27 lb FT = 20%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3OTHERS2x4 SP No.3

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 5-10-8 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

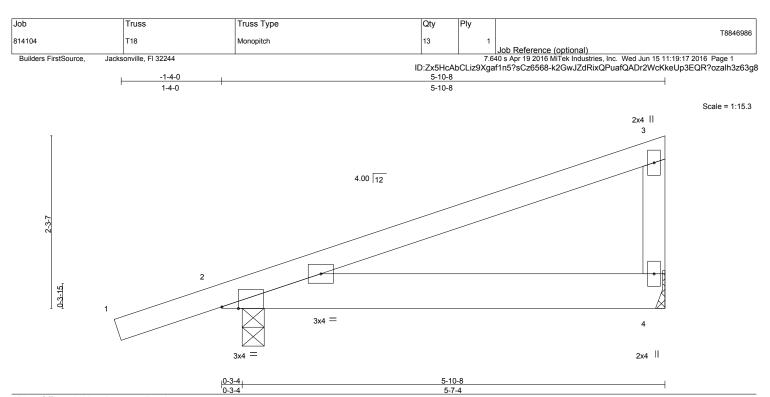
REACTIONS. All bearings 5-7-4.

(lb) - Max Horz 2=82(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 2, 7, 9, 8 Max Grav All reactions 250 lb or less at joint(s) 2, 7, 9, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (9-10)


- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 1-4-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7, 9, 8.
- 7) na
- 8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
- 9) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular
- building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Plate Of	Plate Offsets (X,Y) [2:0-2-10,Edge]											
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.33	Vert(LL)	0.06	4-6	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.32	Vert(TL)	-0.05	4-6	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	4	n/a	n/a		
BCDL	10.0	Code FBC2014/T	PI2007	(Mati	ix-M)						Weight: 27 lb	FT = 20%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 WEBS

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-10-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD

REACTIONS. (lb/size) 4=203/Mechanical, 2=295/0-3-8 Max Horz 2=95(LC 8) Max Uplift 4=-137(LC 8), 2=-193(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(7-8)

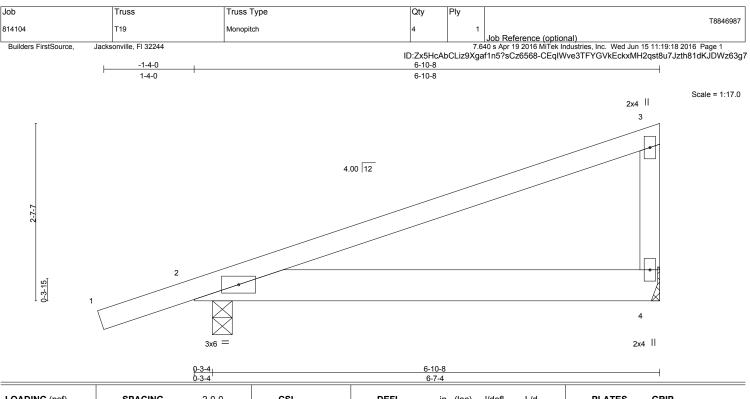
1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left exposed ; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

2=193


6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss. 7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular

building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

⁵⁾ Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=137,

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.47	Vert(LL) 0.12 4-6	>681 240	MT20 244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.44	Vert(TL) -0.10 4-6	>845 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(TL) -0.00 4	n/a n/a	
BCDL 10.0	Code FBC2014/TPI2007	(Matrix-M)			Weight: 32 lb FT = 20%

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

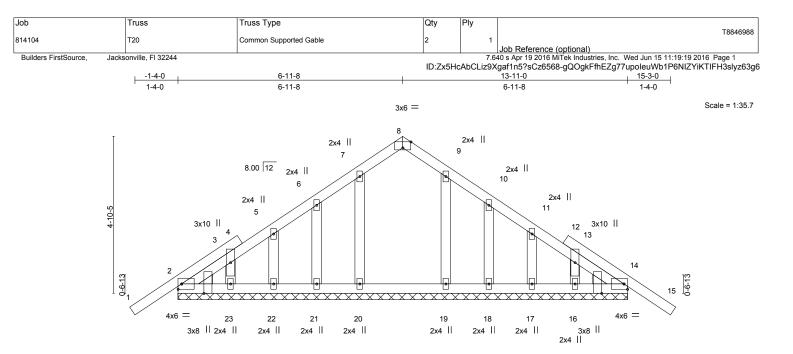
REACTIONS. (Ib/size) 4=241/Mechanical, 2=331/0-3-8 Max Horz 2=107(LC 8)

Max Uplift 4=-164(LC 8), 2=-213(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (7-8)

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left exposed ; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=164, 2=213.

6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

- 7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 8) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.

		H				13-11-0						
LOADING (ps TCLL 20. TCDL 7.	0 0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.25 1.25	CSI. TC BC	0.19 0.06	DEFL. Vert(LL) Vert(TL)	-0.01 -0.01	(loc) 15 15	l/defl n/r n/r	L/d 120 120	PLATES MT20	GRIP 244/190
BCLL 0. BCDL 10.	0 *	Rep Stress Incr Code FBC2014/T	YES PI2007	WB (Matri	0.03 ix)	Horz(TL)	0.00	14	n/a	n/a	Weight: 83 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 WEDGE

Left: 2x4 SP No.2, Right: 2x4 SP No.2

REACTIONS. All bearings 13-11-0.

(lb) - Max Horz 2=-175(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 14, 20, 21, 22, 23, 19, 18, 17, 16 Max Grav All reactions 250 lb or less at joint(s) 2, 14, 20, 21, 22, 23, 19, 18, 17, 16

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (10-11)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

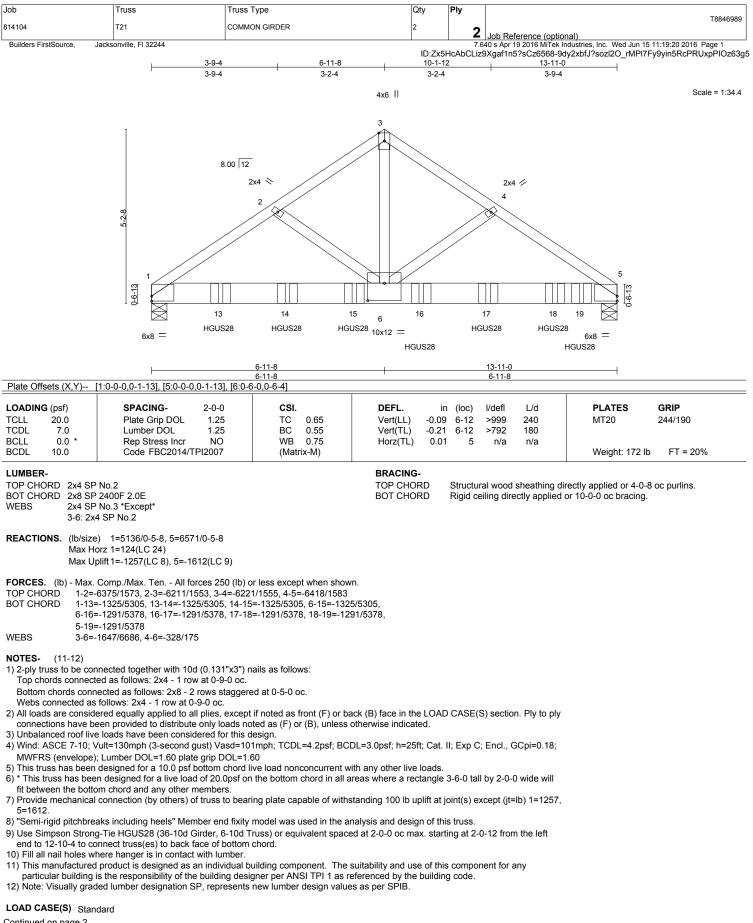
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 1-4-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14, 20, 21, 22, 23, 19, 18, 17, 16.

9) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

- 10) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 11) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

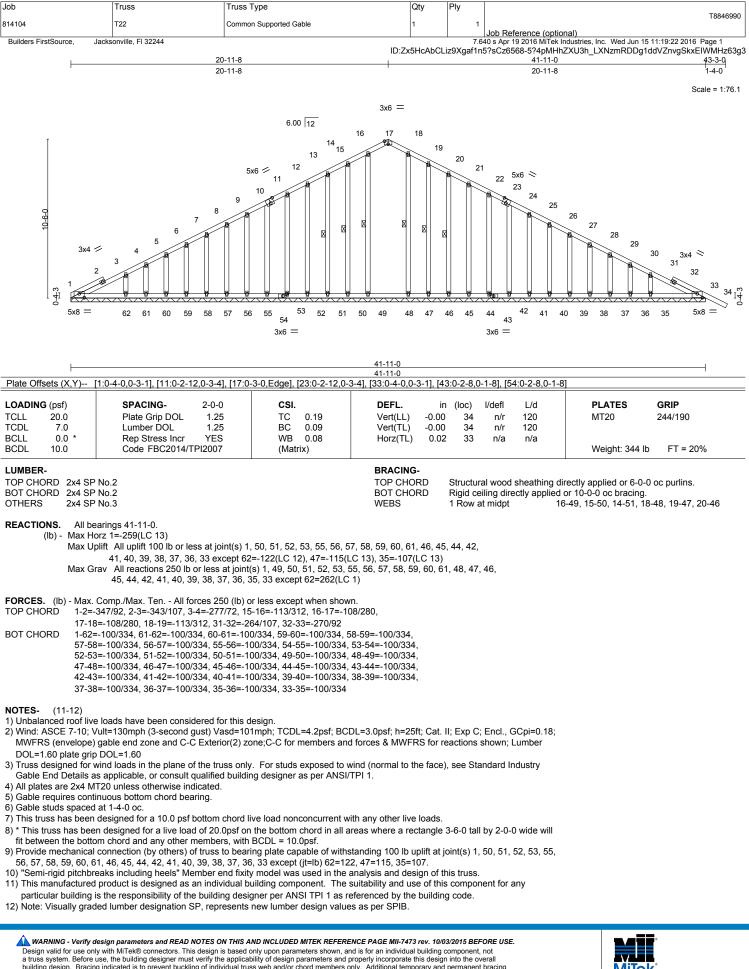
Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	T00 10000			
814104	T21	COMMON GIRDER	2		T8846989			
				Z	Job Reference (optional)			
Builders FirstSource, Jacks	onville, FI 32244			7.0	40 s Apr 19 2016 MiTek Industries, Inc. Wed Jun 15 11:19:20 2016 Page 2			
ID:Zx5HcAbCLiz9Xgaf1n5?sCz6568-9dy2xbfJ?sozI2O_rMPI7Fy9yin5RcPRUxpPIOz6								

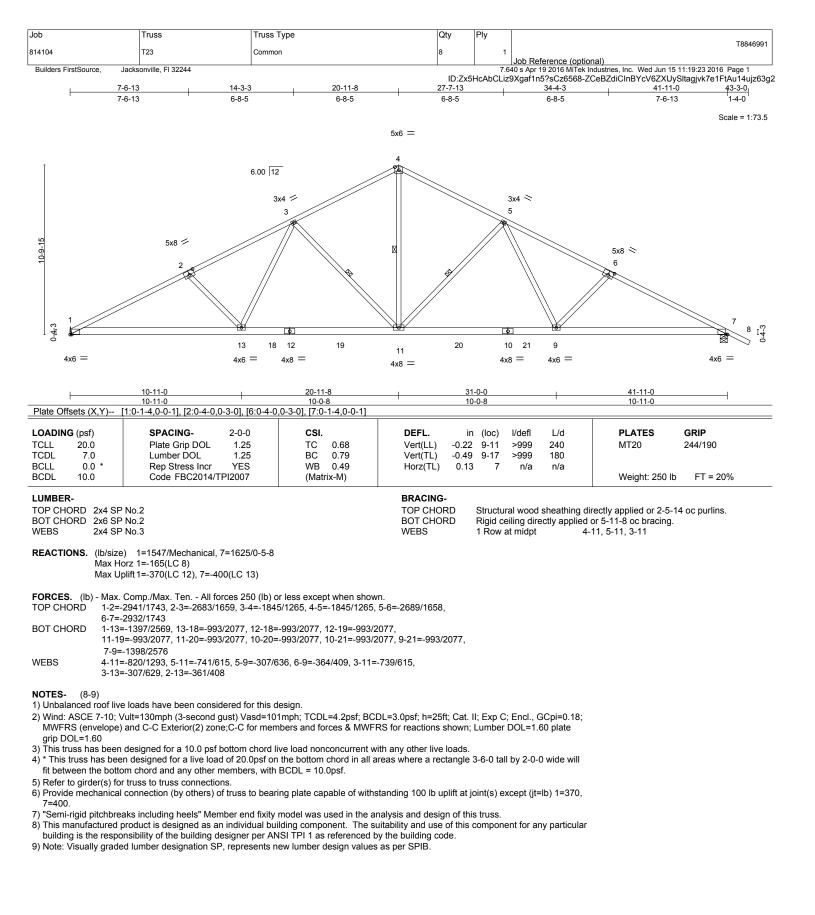
LOAD CASE(S) Standard

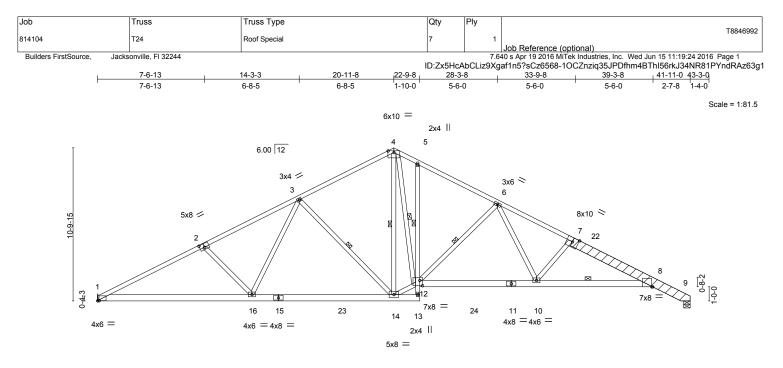
1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25


Uniform Loads (plf) Vert: 1-3=-54, 3-5=-54, 7-10=-20

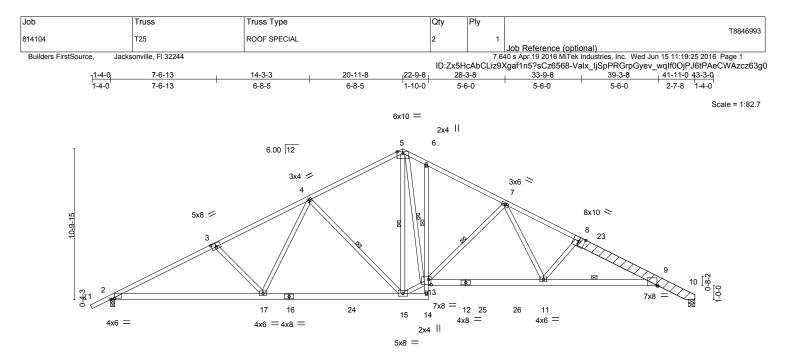
Concentrated Loads (lb)

Vert: 13=-1527(B) 14=-1527(B) 15=-1527(B) 16=-1527(B) 17=-1527(B) 18=-1527(B) 19=-1514(B)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

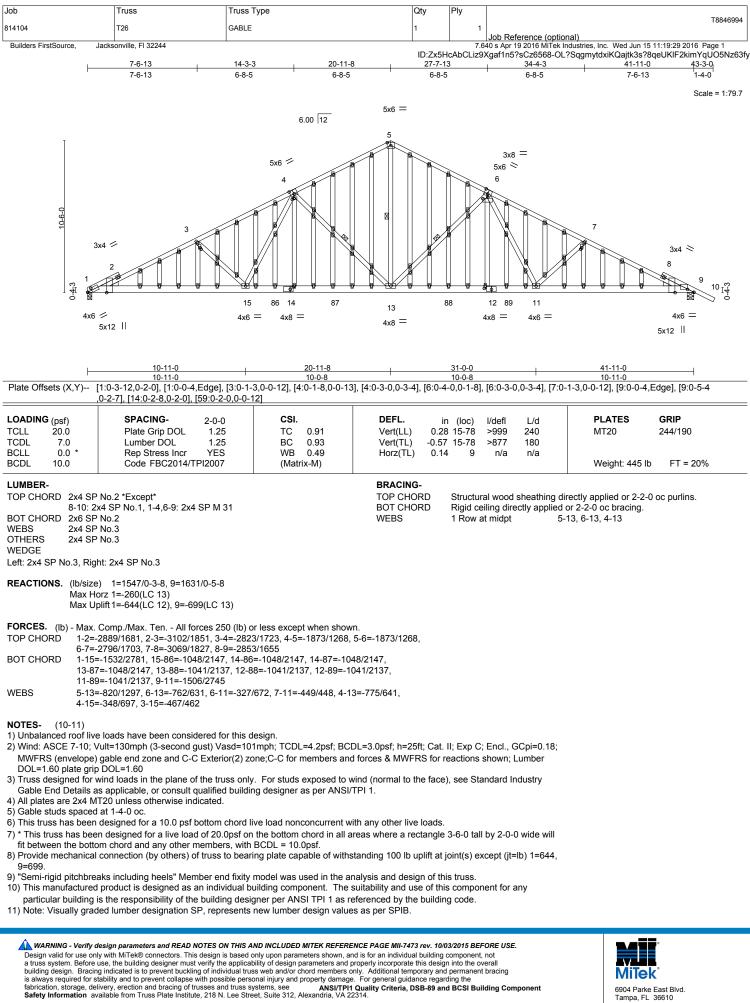

besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

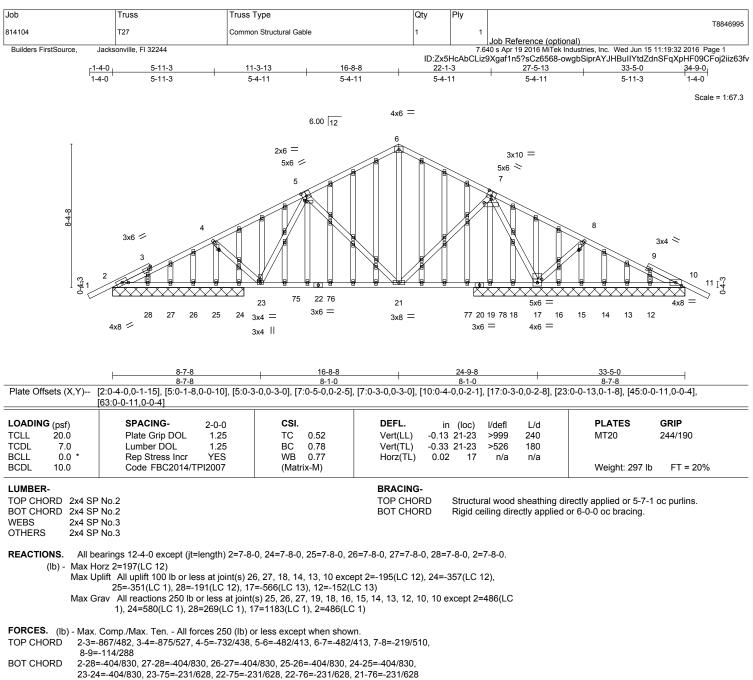
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



	10-11-0 10-11-0	<u>20-11-8</u> 10-0-8	22-9-8 1-10-0	<u>31-0-8</u> 8-3-0			11-0 7-8		
Plate Offsets (X,Y)	[1:0-1-4,0-0-1], [2:0-4-0,0-3-0], [8:0-0-1	12,0-0-0], [12:0-2-4,0-4-8]	[
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2014/TPI2007	CSI. TC 0.66 BC 0.87 WB 0.64 (Matrix-M)	Vert(TL) -0.0	in (loc) l/defl 25 10-12 >999 62 10-12 >812 30 9 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 308 lb	GRIP 244/190 FT = 20%		
BOT CHORD 2x6 SF 5-13: 2 WEBS 2x4 SF OTHERS 2x8 SF LBR SCAB 7-9 2x6	8 SP 2400F 2.0E No.2 *Except* x4 SP No.3 No.3 2400F 2.0E 3 SP 2400F 2.0E one side		BRACING- TOP CHORD BOT CHORD WEBS		rectly applied or t 5-12 ng: 8-10	ctly applied or 2-7-6 5-10-15 oc bracing. 2 4, 6-12, 4-12, 3-14			
REACTIONS. (Ib/size) 1=1534/Mechanical, 9=1552/0-5-8 Max Horz 1=-154(LC 8) Max Uplift 1=-368(LC 12), 9=-368(LC 13) FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. TOP CHORD 1-2=-2909/1725, 2-3=-2649/1638, 3-4=-1821/1253, 4-5=-2051/1487, 5-6=-2131/1400, 6-7=-3152/1905, 7-22=-3310/1997, 8-9=-686/419 BOT CHORD 1-16=-1414/2541, 15-16=-1012/2049, 15-23=-1012/2049, 14-23=-1012/2049, 12-24=-1194/2411, 11-24=-1194/2411, 10-11=-1194/2411, 8-10=-1715/3175 WEBS 2-16=-362/408, 3-16=-295/626, 6-12=-814/617, 6-10=-427/820, 7-10=-639/521, 4-12=-936/1594, 12-14=-561/1708, 3-14=-733/615									
					~ F		4		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.




F	<u> </u>	<u> </u>	1-10-0	<u>31-0-8</u> 8-3-0		<u>39-3-8</u> 8-3-0	+ <u>41-11-0</u> 2-7-8			
Plate Offsets (X,Y)	[2:0-3-4,0-1-1], [3:0-4-0,0-3-0], [9:0-0-1			0-3-0		0-3-0	2-1-8			
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2014/TPI2007	CSI. TC 0.67 BC 0.87 WB 0.64 (Matrix-M)	Vert(TL) -0.	in (loc) l/defl 26 11-13 >999 62 11-13 >804 31 10 n/a	180	PLATES MT20 Weight: 31	GRIP 244/190 1 lb FT = 20%			
BOT CHORD 2x6 SP 6-14: 2: WEBS 2x4 SP OTHERS 2x8 SP	x8 SP 2400F 2.0E No.2 *Except* x4 SP No.3		BRACING- TOP CHORD BOT CHORD WEBS		irectly applied ot 6 ng: 9-11	directly applied or 2- d or 5-11-0 oc bracii 3-13 5-15, 7-13, 5-13, 4-1	ng. Except:			
Max Ho	e) 2=1613/0-3-8, 10=1553/0-5-8 orz 2=165(LC 11) plift2=-398(LC 12), 10=-368(LC 13)									
TOP CHORD 2-3=- 7-8=- BOT CHORD 2-17= 12-13 9-11= WEBS 3-17=	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2902/1726, 3-4=-2657/1638, 4-5=-1823/1253, 5-6=-2053/1487, 6-7=-2134/1400, 7-8=-3155/1905, 8-23=-3313/1997, 9-10=-686/419 BOT CHORD 2-17=-1415/2550, 16-17=-1012/2054, 16-24=-1012/2054, 15-24=-1012/2054, 12-13=-1194/2413, 12-25=-1194/2413, 11-26=-1194/2413, 9-11=-1715/3177									
 NOTES- (9-10) 1) Attached 9-3-13 scab 8 to 10, back face(s) 2x8 SP 2400F 2.0E with 2 row(s) of 10d (0.131"x3") nails spaced 9" o.c.except : starting at 4-3-13 from end at joint 8, nail 2 row(s) at 3" o.c. for 3-0-5. 2) Unbalanced roof live loads have been considered for this design. 3) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 										
 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=398, 10=368. 										
 8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss. 9) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code. 10) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB. 										

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6904 Parke East Blvd Tampa, FL 36610

WEBS 7-21=-130/418, 7-17=-1084/698, 8-17=-260/305, 5-21=-325/308, 4-23=-272/313

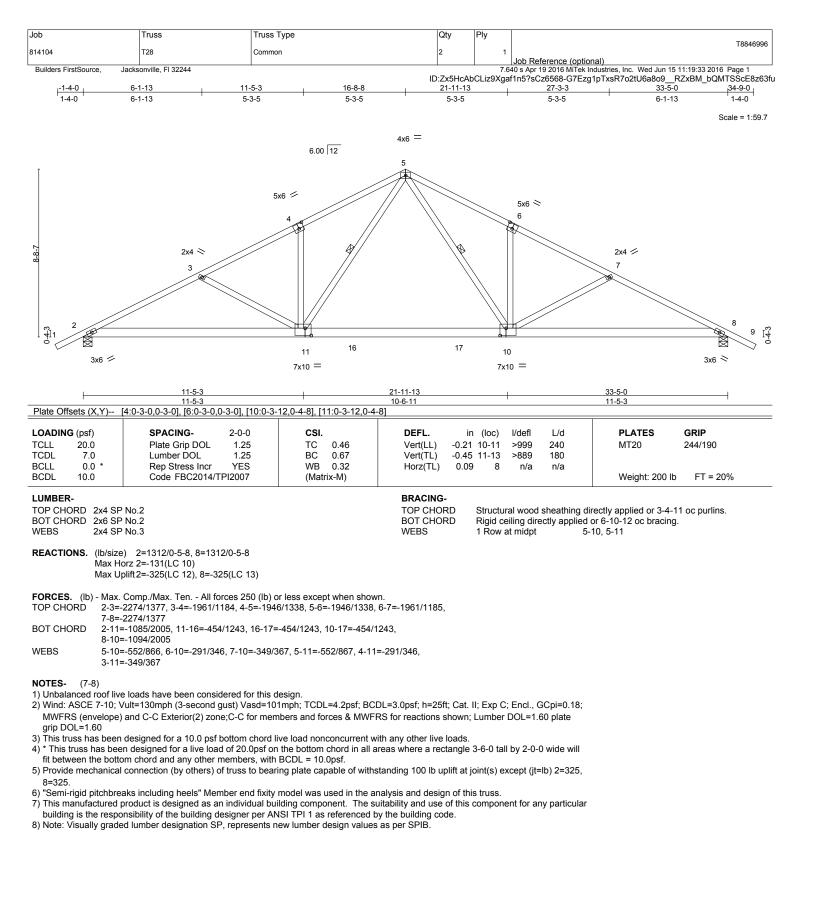
NOTES- (10-11)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

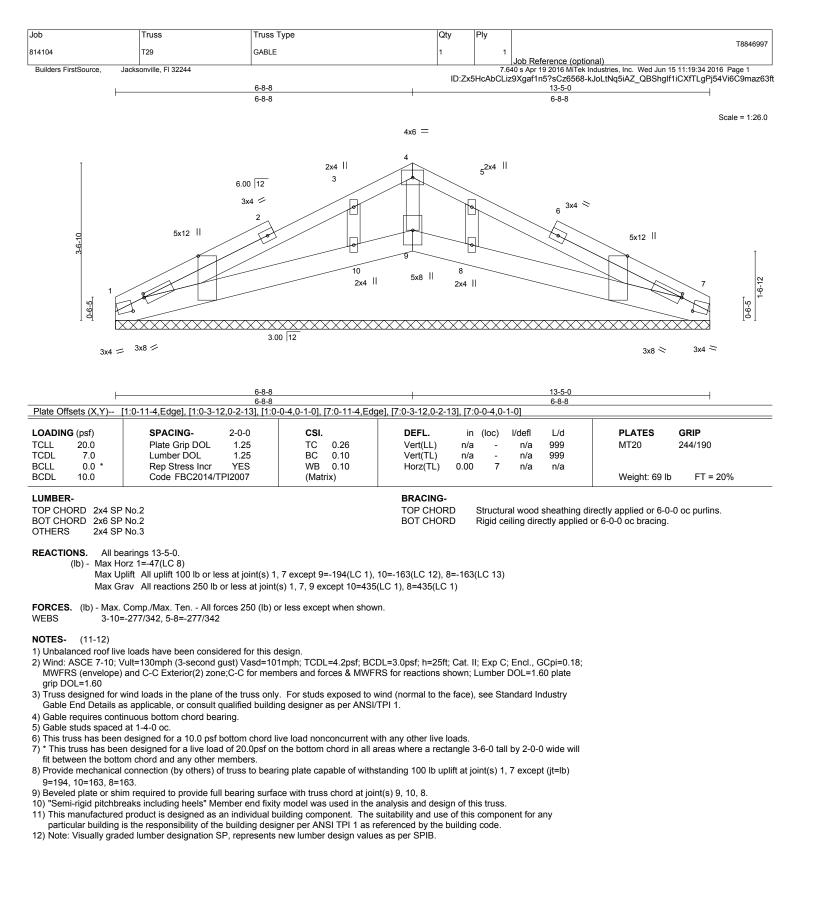
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 1-4-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

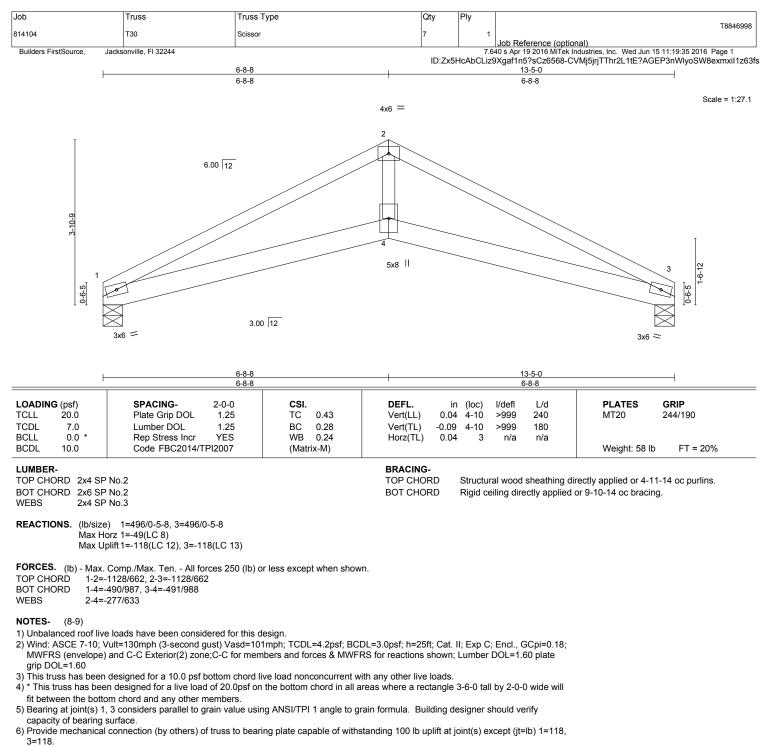
8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 26, 27, 18, 14, 13, 10, 10 except (jt=lb) 2=195, 24=357, 25=351, 28=191, 17=566, 12=152, 2=195.


9) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
 10) This manufactured product is designed as an individual building component. The suitability and use of this component for any

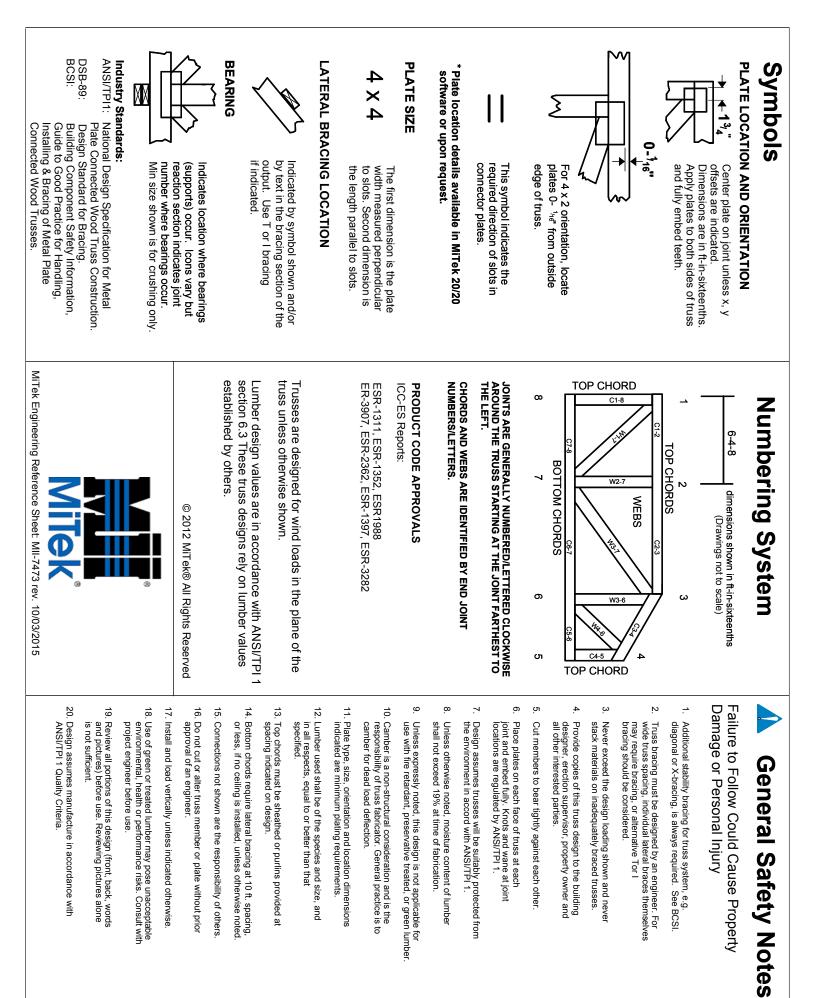
particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

11) Note: Visually graded lumber designation SP, represents new lumber design values as per SPIB.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

8) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular

building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

