

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

> MiTek USA, Inc. 6904 Parke East Blvd.

RE: 1114282 -

Site Information:

Customer Info: Starr Custom Homes Project Name: 1114282 Model: Starr Residence Lot/Block: Address: 4330 Springmoor Dr. E. City: Duval

Name Address and License # of Structural Engineer of Record, If there is one, for the building. Name: Pontigo, Luis Antonio, PE Address: 420 Osceola Ave. City: Jacksonville Beach

State: Florida

License #: 53311

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

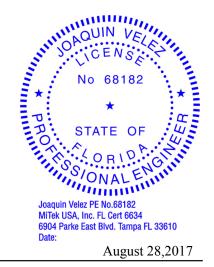
Subdivision:

State: Florida

Design Code: FBC2014/TPI2007 Wind Code: ASCE 7-10 Roof Load: 32.0 psf

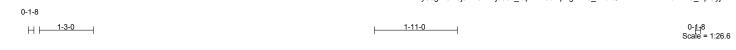
Design Program: MiTek 20/20 7.6 Wind Speed: 130 mph Floor Load: 55.0 psf

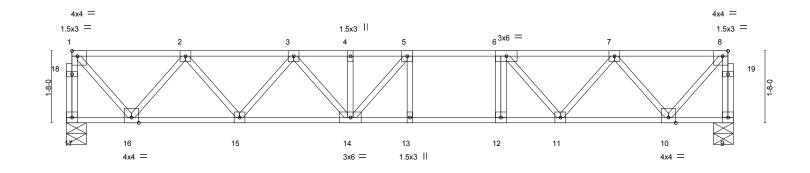
This package includes 33 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet. I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.


No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T11930197	F01	8/28/17	18	T11930214	T12	8/28/17
2	T11930198	F02	8/28/17	19	T11930215	T13	8/28/17
3	T11930199	F03	8/28/17	20	T11930216	T14	8/28/17
4	T11930200	F04	8/28/17	21	T11930217	T15	8/28/17
5	T11930201	FGE01	8/28/17	22	T11930218	T16	8/28/17
6	T11930202	FGE02	8/28/17	23	T11930219	T17	8/28/17
7	T11930203	T01	8/28/17	24	T11930220	T18	8/28/17
8	T11930204	T02	8/28/17	25	T11930221	TGE01	8/28/17
9	T11930205	T03	8/28/17	26	T11930222	TGE02	8/28/17
10	T11930206	T04	8/28/17	27	T11930223	TGE03	8/28/17
11	T11930207	T05	8/28/17	28	T11930224	TGE04	8/28/17
12	T11930208	T06	8/28/17	29	T11930225	TGE05	8/28/17
13	T11930209	T07	8/28/17	30	T11930226	TGE06	8/28/17
14	T11930210	T08	8/28/17	31	T11930227	TGE07	8/28/17
15	T11930211	T09	8/28/17	32	T11930228	TGE08	8/28/17
16	T11930212	T10	8/28/17	33	T11930229	TGE09	8/28/17
17	T11930213	T11	8/28/17		•		

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Jacksonville.

Truss Design Engineer's Name: Velez, Joaquin


My license renewal date for the state of Florida is February 28, 2019.


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Velez, Joaquin

Job	Truss	Truss Type	Qty	Ply			
1114282	F01	Floor	6		T11930197		
					Job Reference (optional)		
Builders FirstSource, Jacks	onville, Fl 32244			7	640 s Aug 16 2017 MiTek Industries, Inc. Mon Aug 28 11:48:14 2017 Page 1		
ID:kByesgwGT5jJFPsMfnj9JJz_OpR-DobwpLgWXs_RrdiQil?NWwIPi2IEf3nzwo_KpGyj							

L			15-5-0				
			15-5-0				
Plate Offsets (X,Y)	[1:Edge,0-1-8], [8:0-1-8,Edge]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.67 BC 0.53 WB 0.45	Vert(LL) -0.1	in (loc) l/defl 6 13-14 >999 3 13-14 >797 3 9 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code FBC2014/TPI2007	(Matrix)				Weight: 90 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			BRACING- TOP CHORD BOT CHORD	end verticals.	0	ectly applied or 6-0- or 10-0-0 oc bracing.	0 oc purlins, except

REACTIONS. (lb/size) 17=828/0-5-8, 9=828/0-5-8

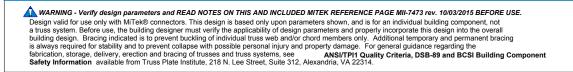
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 17-18=-824/0, 1-18=-823/0, 9-19=-827/0, 8-19=-826/0, 1-2=-648/0, 2-3=-1541/0, 3-4=-2025/0, 4-5=-2025/0,

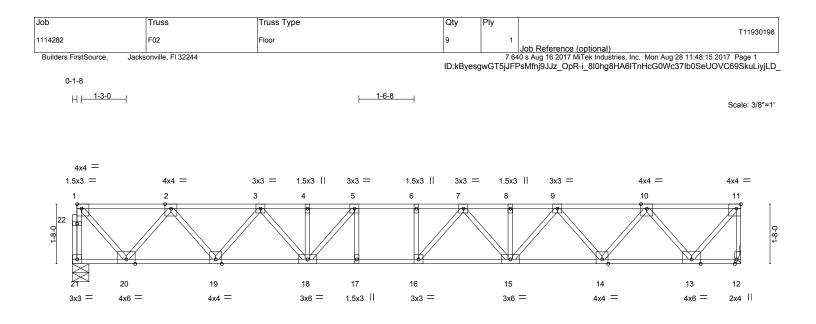
5-6=-1971/0, 6-7=-1542/0, 7-8=-647/0

BOT CHORD 15-16=0/1215, 14-15=0/1853, 13-14=0/1971, 12-13=0/1971, 11-12=0/1971, 10-11=0/1204

WEBS 1-16=0/948, 2-16=-900/0, 2-15=0/518, 3-15=-495/0, 3-14=0/265, 5-14=-273/282, 8-10=0/947, 7-10=-884/0, 7-11=0/537, 6-11=-704/0, 6-12=-22/274


NOTES-

1) Unbalanced floor live loads have been considered for this design.


2) All plates are 3x3 MT20 unless otherwise indicated.

3) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

1-6-0	4-0-0		14-9-8		17-3-8	18-8-0
	2-6-0		10-9-8		2-6-0	1-4-8
Plate Offsets (X,Y)	[1:Edge,0-1-8], [11:0-1-8,Edge], [12:0-1	-8,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code FBC2014/TPI2007	CSI. TC 0.63 BC 0.46 WB 0.57 (Matrix)	Vert(LL) -0.1	in (loc) l/defl L/d 8 15-16 >999 360 8 15-16 >792 240 95 12 n/a n/a	PLATES MT20 Weiaht: 106 lb	GRIP 244/190 FT = 20%F. 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	P No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0	

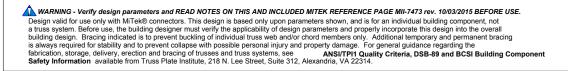
REACTIONS. (lb/size) 21=1010/0-5-8, 12=1016/Mechanical

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

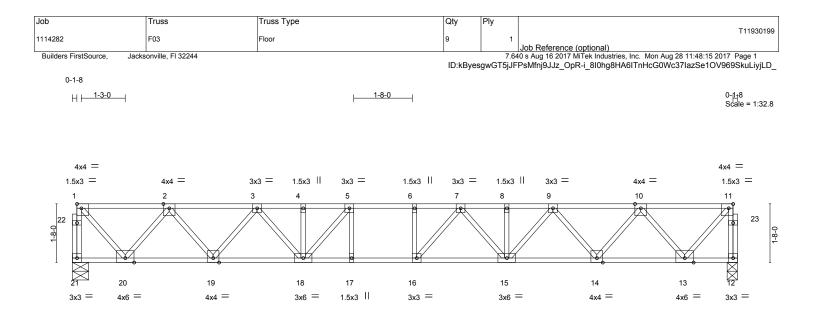
- TOP CHORD 21-22=-1004/0, 1-22=-1003/0, 11-12=-1010/0, 1-2=-809/0, 2-3=-2003/0, 3-4=-2758/0, 4-5=-2758/0, 5-6=-3018/0, 6-7=-3018/0, 7-8=-2758/0, 8-9=-2758/0, 9-10=-1976/0, 10-11=-774/0 BOT CHORD 19-20=0/1525, 18-19=0/2455, 17-18=0/3018, 16-17=0/3018, 15-16=0/2960, 14-15=0/2440,
- WEBS 11-13=0/1194, 1-20=0/1185, 10-13=-1145/0, 2-20=-1138/0, 10-14=0/765, 2-19=0/758, 9-14=-736/0, 3-19=-719/0, 9-15=0/491, 3-18=0/466, 7-15=-345/0, 5-18=-638/27, 7-16=-183/395

NOTES-

1) Unbalanced floor live loads have been considered for this design.


2) Refer to girder(s) for truss to truss connections.

3) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.


4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

			<u>18-11-0</u> 18-11-0	I
Plate Offsets (X,Y)	[1:Edge,0-1-8], [11:0-1-8,Edge]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode FBC2014/TPI2007	CSI. TC 0.70 BC 0.49 WB 0.57 (Matrix)		L/d PLATES GRIP 360 MT20 244/190 240 n/a Weight: 109 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			end verticals.	neathing directly applied or 6-0-0 oc purlins, except tly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 21=1020/0-5-8, 12=1020/0-3-8

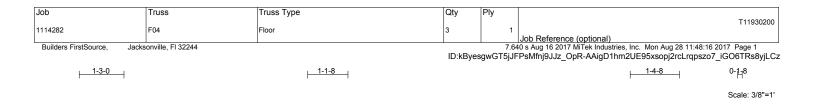
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

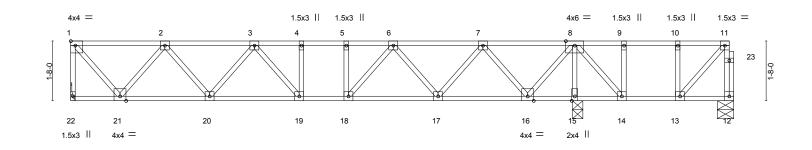
- TOP CHORD
 21-22=-1014/0, 1-22=-1015/0, 11-23=-1015/0, 1-2=-818/0, 2-3=-2029/0, 3-4=-2799/0, 4-5=-2799/0, 5-6=-3077/0, 6-7=-3077/0, 7-8=-2814/0, 8-9=-2814/0, 9-10=-2026/0, 10-11=-819/0

 BOT CHORD
 19-20=0/1543, 18-19=0/2489, 17-18=0/3077, 16-17=0/3077, 15-16=0/3017, 14-15=0/2492,
- 13-14=0/1542

 WEBS
 11-13=0/1199, 1-20=0/1198, 10-13=-1148/0, 2-20=-1151/0, 10-14=0/768, 2-19=0/772, 9-14=-741/0, 3-19=-731/0, 9-15=0/496, 3-18=0/478, 7-15=-350/0, 5-18=-671/16, 7-16=-186/408

NOTES-


1) Unbalanced floor live loads have been considered for this design.


2) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 MSNITP11 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code FBC2014/TPI2007	CSI. TC 0.37 BC 0.52 WB 0.42 (Matrix)	Vert(LL) -0.0	in (loc) l/defl L/d)7 19-20 >999 360 11 19-20 >999 240 03 15 n/a n/a	PLATES MT20 Weight: 105 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di end verticals. Rigid ceiling directly applied	5 11	oc purlins, except

REACTIONS. (lb/size) 22=742/Mechanical, 12=140/0-5-8, 15=1126/0-3-8 Max Uplift 12=-28(LC 3) Max Grav 22=747(LC 10), 12=207(LC 4), 15=1130(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-22=-741/0, 1-2=-545/0, 2-3=-1314/0, 3-4=-1634/0, 4-5=-1634/0, 5-6=-1634/0,

6-7=-1215/0. 7-8=-383/0

- BOT CHORD 20-21=0/1049, 19-20=0/1554, 18-19=0/1634, 17-18=0/1499, 16-17=0/912, 15-16=-279/0,
- 14-15=-279/0

 WEBS
 8-15=-1141/0, 1-21=0/840, 8-16=0/891, 2-21=-801/0, 7-16=-848/0, 2-20=0/421,
- 7-17=0/496, 3-20=-381/0, 6-17=-467/0, 3-19=-81/299, 6-18=-11/371, 8-14=0/388

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x3 MT20 unless otherwise indicated.

3) Refer to girder(s) for truss to truss connections.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 12.

5) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 MSNITP11 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type		Qty	Ply				
1114282	FGE01	GABLE		1	1				T11930201
				-		Job Reference			
Builders FirstSource, Ja	acksonville, FI 32244		ID:k	ByesgwG					1:48:17 2017 Page 1 GR1sX1PdmD?OayjLCy
0- <mark>11</mark> 8									0- <mark>1-</mark> 8
									Scale = 1:26.3
3x3 =									
1 2	3	4 5	6 7		8	9	10	11	12 13
27	•	<u>0</u>	0		•	•	•	•	28
									• 20

F	<u>1-6-12</u> 1-6-12	<u>2-10-12</u> <u>4-2-1</u> <u>1-4-0</u> <u>1-4-</u>		-12 6-10-12 -0 1-4-0			-10-12 -4-0	<u>12-2-12</u> 1-4-0		1-10-12 15-5-0 1-4-0 0-6-4
LOADIN	· · ·	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL TCDL	40.0 10.0	Plate Grip DOL Lumber DOL	1.00 1.00	TC 0.10 BC 0.01	Vert(LL) Vert(TL)	n/a - n/a -	n/a n/a	999 999	MT20	244/190
BCLL BCDL	0.0 5.0	Rep Stress Incr Code FBC2014/T	YES PI2007	WB 0.04 (Matrix)	Horz(TL)	-0.00 14	n/a	n/a	Weight: 79 lb	FT = 20%F, 11%E

LUMBER-

26

3x3 =

25

3x3 =

24

23

22

21

 TOP CHORD
 2x4 SP No.2(flat)

 BOT CHORD
 2x4 SP No.2(flat)

 WEBS
 2x4 SP No.2(flat)

 OTHERS
 2x4 SP No.3(flat)

BRACING-TOP CHORD

BOT CHORD

20

19

18

Structural wood sheathing directly applied or 10-0-0 oc purlins, except end verticals.

-8-0

15 14

_{3x3} =

Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 25-26.

17

16

REACTIONS. All bearings 15-5-0.

(lb) - Max Uplift All uplift 100 lb or less at joint(s) 14

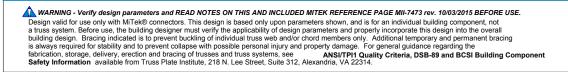
Max Grav All reactions 250 lb or less at joint(s) 26, 14, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.


3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14.

6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Job	Truss	Truss Type	Qty Ply		T11930202
1114282	FGE02	GABLE	1 1	Job Reference (optional)	
Builders FirstSource, Jacks	onville, Fl 32244		7.6 ID:kByesgwGT5jJFPsM	40 s Aug 16 2017 MiTek Industries, Inc. fnj9JJz_OpR-eNG2RNiOpnM0i4R	. Mon Aug 28 11:48:17 2017 Page 1 2_NRZ48YN3tGR1sX1PdmD?OayjLCy
0-118					0-11-8
					Scale = 1:31.6
_{3x3} =					
1 2	3 4	5 6 7	8 9 10	11 12	13 14 15
	<u>e</u> <u>e</u>		<u>o</u> <u>o</u> <u>o</u>	<u>e</u> <u>o</u>	
30 29	28 27	26 25 24	23 22 21	20 19	18 17 16
3x3 = 3x3 =					3x3 =

<u> </u>	<u>2-10-12</u> <u>4-2-12</u> <u>5-6-12</u> <u>1-4-0</u> <u>1-4-0</u> <u>1-4-0</u>	<u>-+ 6-10-12 + 8-2-12</u> 1-4-0 1-4-0	<u>9-6-12 10-10-12 12-2</u> <u>1-4-0 1-4-0 1-4</u>		2 <u>16-2-12 17-6-12 18-6-0</u> <u>1-4-0 1-4-0 0-11-4</u>
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.10 BC 0.01 WB 0.04	DEFL. in Vert(LL) n/a Vert(TL) n/a Horz(TL) 0.00	(loc) l/defl L/d - n/a 999 - n/a 999 16 n/a n/a	PLATES GRIP MT20 244/190
BCDL 5.0	Code FBC2014/TPI2007	(Matrix)	1012(12) 0.00	10 11/a 11/a	Weight: 93 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 \$	SP No.2(flat)		BRACING- TOP CHORD S	tructural wood sheathing di	rectly applied or 6-0-0 oc purlins, except

 TOP CHORD
 2x4 SP No.2(flat)

 BOT CHORD
 2x4 SP No.2(flat)

 WEBS
 2x4 SP No.3(flat)

 OTHERS
 2x4 SP No.3(flat)

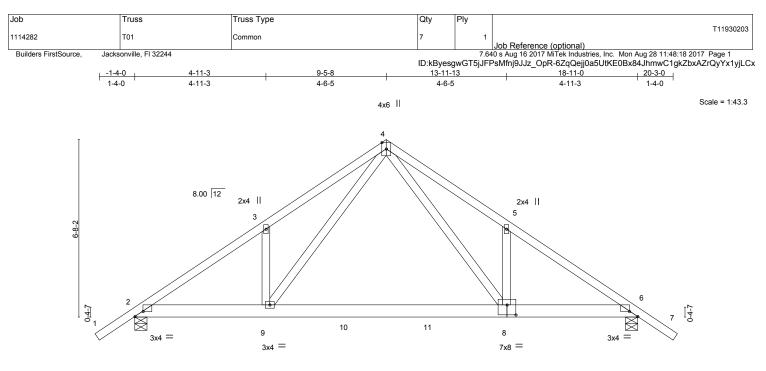
Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 18-6-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 30, 16, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

- 2) Gable requires continuous bottom chord bearing.
- 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 4) Gable studs spaced at 1-4-0 oc.
- 5) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

		11-3 11-3			<u>13-11-13</u> 9-0-10				<u>18-</u> 4-1	11-0 1-3	
Plate Offsets (X, Y	[2:0-3-11,0-2-4], [6:0-3-	11,0-2-4], [8:0-	-4-0,0-4-8]		1					1	
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC	0.20	Vert(LL)	-0.07	8-9	>999	240	MT20	244/190
TCDL 7.0	Lumber DOL	1.25	BC	0.25	Vert(TL)	-0.12	8-9	>999	180		
3CLL 0.0 *	Rep Stress Incr	YES	WB	0.23	Horz(TL)	0.01	6	n/a	n/a		
BCDL 5.0	Code FBC2014/	TPI2007	(Matr	ix)						Weight: 114	lb FT = 20%
LUMBER-			, ,	,	BRACING					0	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (lb/size) 2=679/0-5-8, 6=679/0-5-8

Max Horz 2=143(LC 11)

Max Uplift 2=-104(LC 12), 6=-104(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 2-3=-873/273, 3-4=-901/414, 4-5=-903/415, 5-6=-874/273 TOP CHORD
- BOT CHORD 2-9=-117/758, 9-10=-7/465, 10-11=-7/465, 8-11=-7/465, 6-8=-127/678
- WEBS 4-8=-210/502, 5-8=-275/213, 4-9=-209/500, 3-9=-274/213

NOTES-

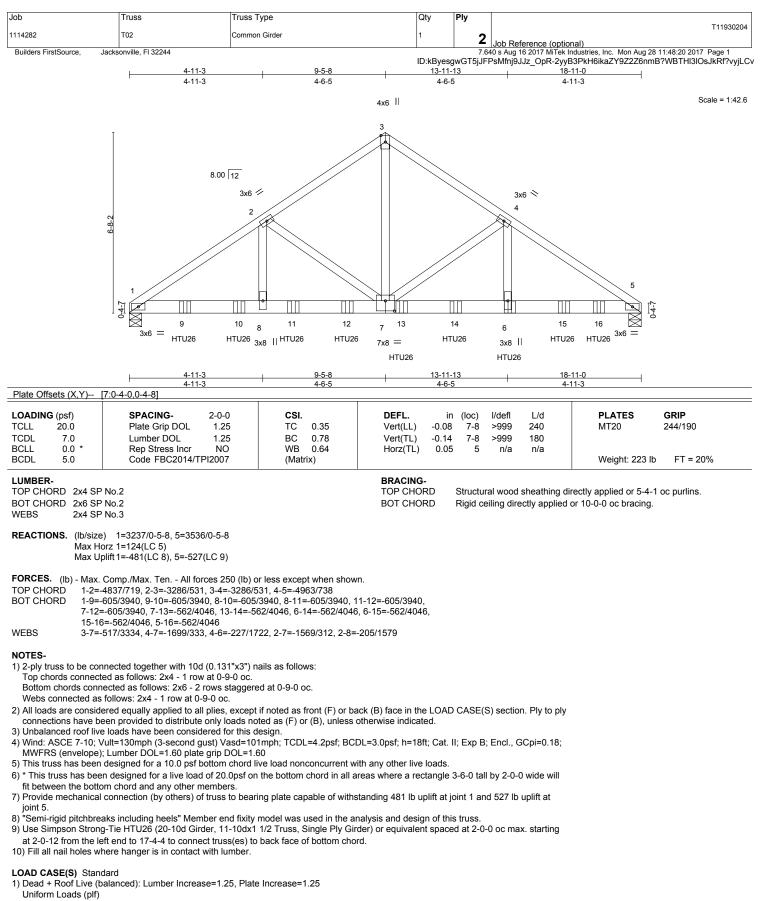
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 5.0psf.

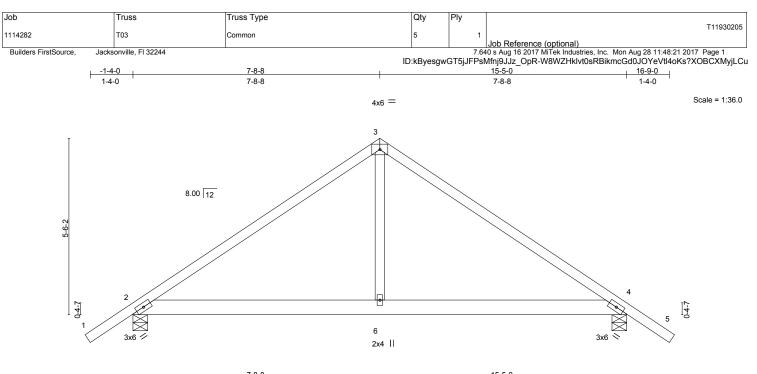
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 104 lb uplift at joint 2 and 104 lb uplift at joint 6.


6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Vert: 1-3=-54, 3-5=-54, 1-5=-10


Job	Truss	Truss Type	Qty	Ply	
1114282	T02	Common Girder	1	2	T11930204
					Job Reference (optional)
Builders FirstSource, Jacks	onville, FI 32244			7.6	40 s Aug 16 2017 MiTek Industries, Inc. Mon Aug 28 11:48:20 2017 Page 2
			ID:kByesg	wGT5jJF	PsMfnj9JJz_OpR-2yyB3PkH6ikaZY9Z2Z6nmB?WBTHI3IOsJkRf?vyjLCv

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 6=-623(B) 9=-623(B) 10=-623(B) 11=-623(B) 12=-623(B) 13=-623(B) 14=-623(B) 15=-614(B) 16=-614(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

				1	7-8-8							
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.57	Vert(LL)	-0.03	4-6	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.26	Vert(TL)	-0.06	4-6	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.11	Horz(TL)	0.01	4	n/a	n/a		
BCDL	5.0	Code FBC2014/T	PI2007	(Mati	ix)						Weight: 76 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (lb/size) 2=567/0-5-8, 4=567/0-5-8 Max Horz 2=-120(LC 10) Max Uplift2=-89(LC 12), 4=-89(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-595/195, 3-4=-595/195

BOT CHORD 2-6=-15/392, 4-6=-15/392 WEBS 3-6=-2/287

NOTES-

4.

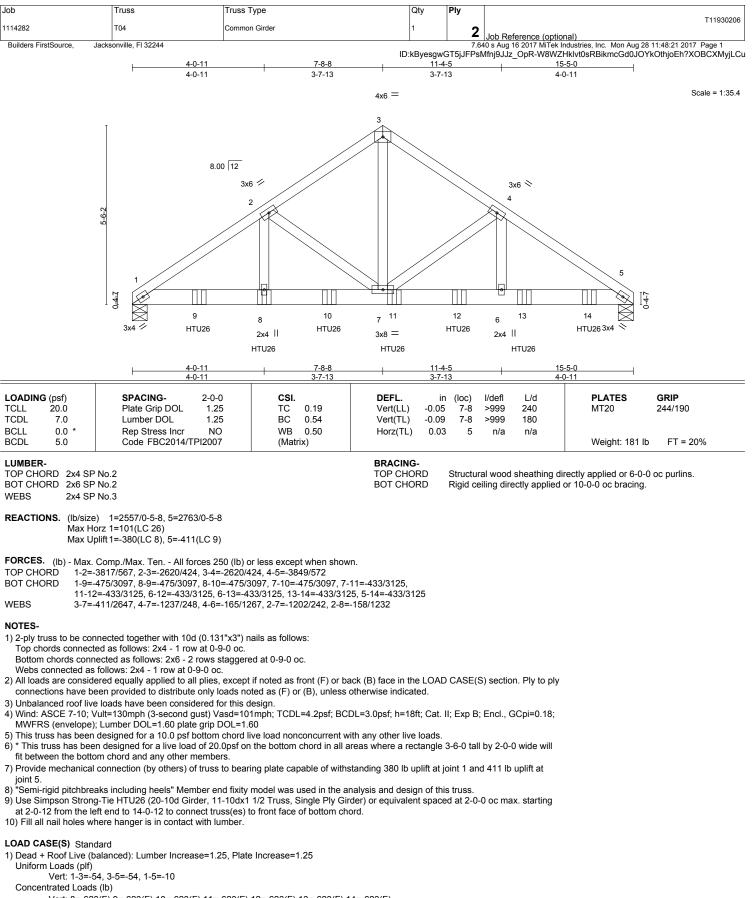
1) Unbalanced roof live loads have been considered for this design.

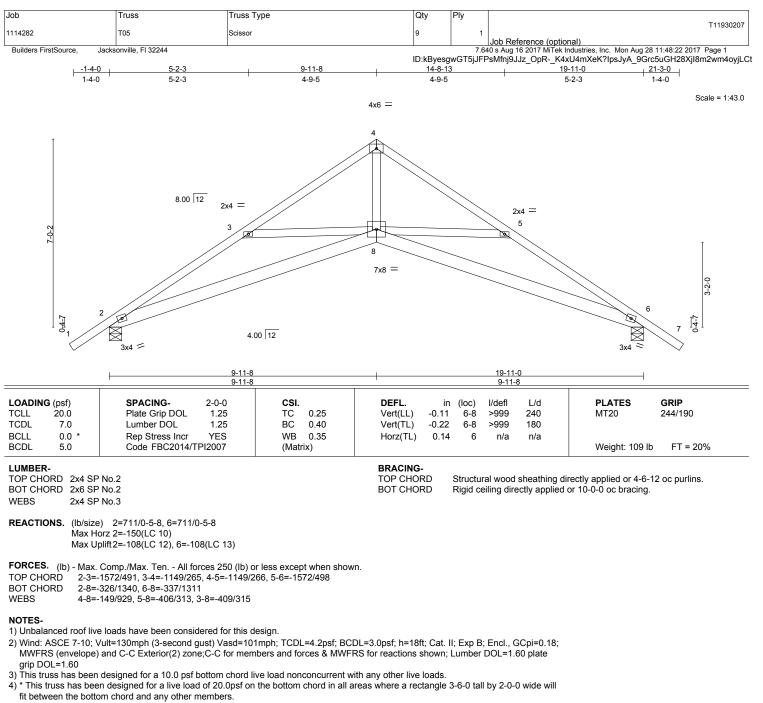
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

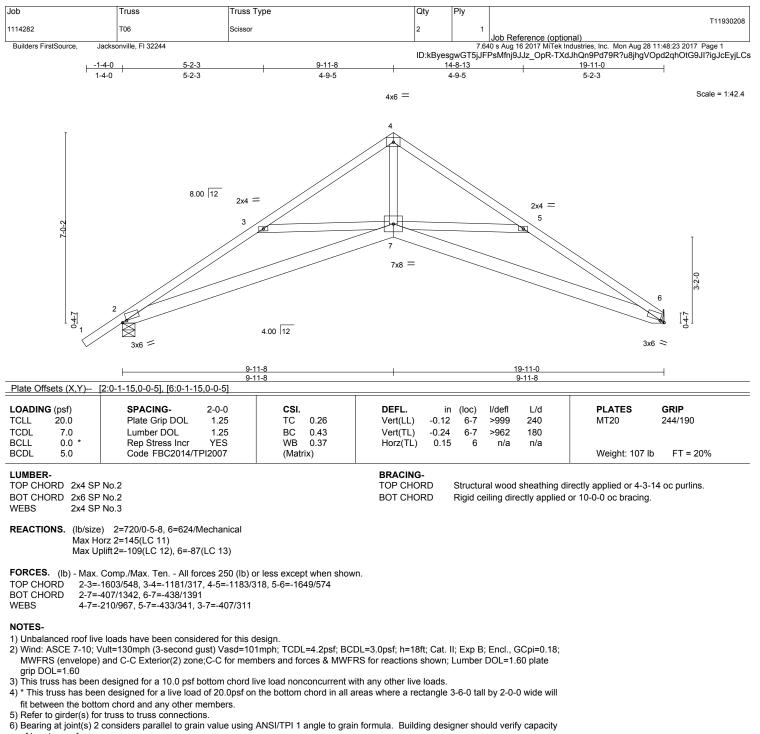
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 89 lb uplift at joint 2 and 89 lb uplift at joint


6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

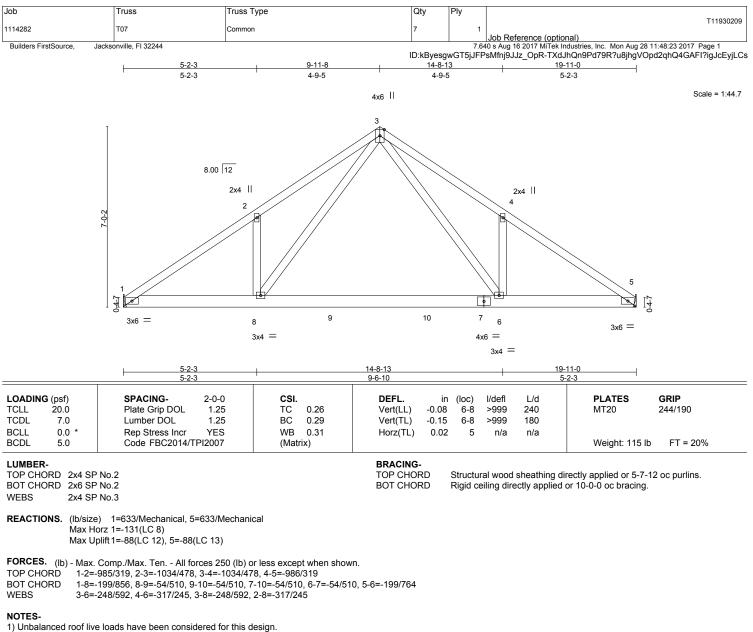
Vert: 8=-623(F) 9=-623(F) 10=-623(F) 11=-623(F) 12=-623(F) 13=-623(F) 14=-623(F)



5) Bearing at joint(s) 2, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 108 lb uplift at joint 2 and 108 lb uplift at joint 6.

7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.



of bearing surface. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 109 lb uplift at joint 2 and 87 lb uplift at joint 6.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will

fit between the bottom chord and any other members, with BCDL = 5.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 88 lb uplift at joint 1 and 88 lb uplift at joint 5

7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.35	Vert(LL) 0.0	05 2-6 >999 240	MT20 244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.19	Vert(TL) -0.0	5 2-6 >999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.44	Horz(TL) 0.0)1 5 n/a n/a	
BCDL 5.0	Code FBC2014/TPI2007	(Matrix)			Weight: 63 lb FT = 20%
LUMBER-			BRACING-	~	
TOP CHORD 2x4 SF			TOP CHORD		ng directly applied or 6-0-0 oc purlins, except
BOT CHORD 2x6 SF				end verticals.	
WEBS 2x4 SF	9 No.3		BOT CHORD	Rigid ceiling directly app	lied or 7-2-9 oc bracing.

Max Horz 2=108(LC 8)

Max Uplift 5=-189(LC 8), 2=-216(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-757/881

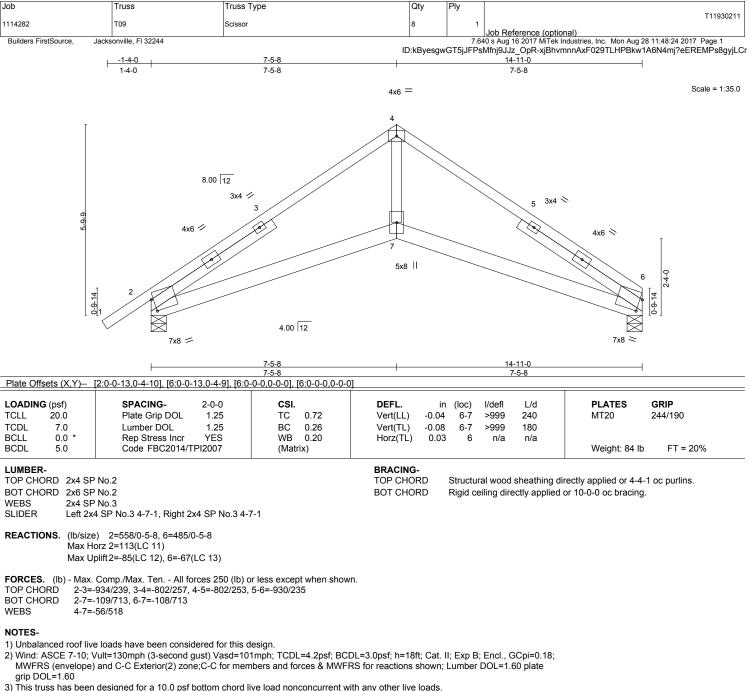
BOT CHORD 2-6=-960/685, 5-6=-960/685 WEBS 3-6=-297/200, 3-5=-700/987

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

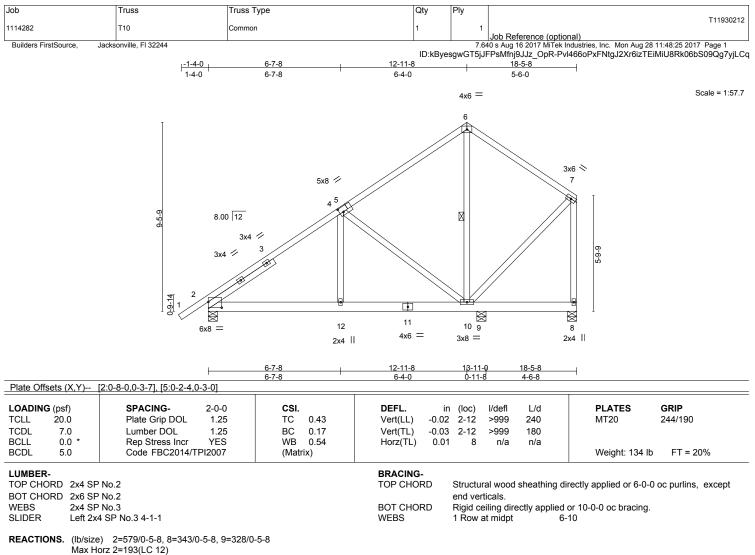
3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will


fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 189 lb uplift at joint 5 and 216 lb uplift at joint 2.

3) This truss has been designed for a 10.0 pst bottom chord live load honconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 2, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 85 lb uplift at joint 2 and 67 lb uplift at joint 6.

Max Uplift 2=-77(LC 12), 8=-66(LC 12), 9=-76(LC 9)

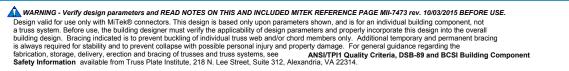
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-661/113, 3-4=-556/131, 4-5=-262/61, 5-6=-254/91, 7-8=-347/106

BOT CHORD 2-12=-206/498, 11-12=-206/498, 10-11=-206/498

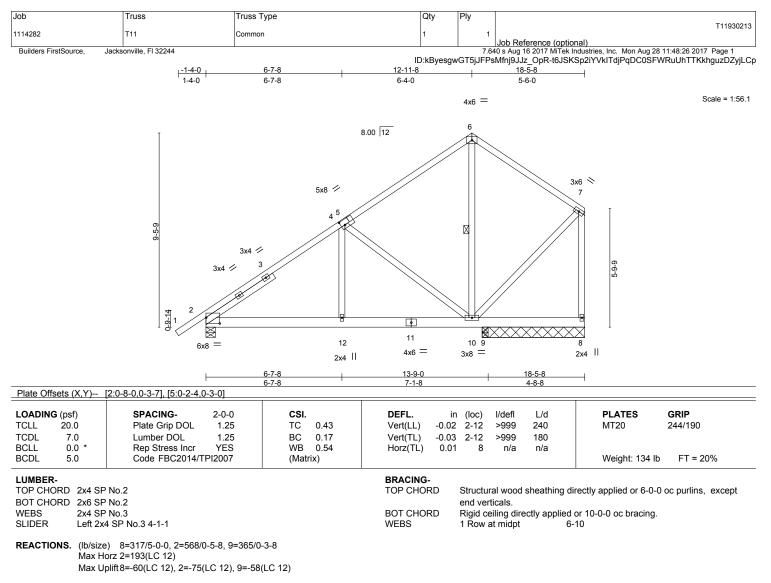
WEBS 4-10=-458/256

NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Solid blocking is required on both sides of the truss at joint(s), 2.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 77 lb uplift at joint 2, 66 lb uplift at joint 8 and 76 lb uplift at joint 9.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-643/149, 3-4=-538/166, 7-8=-320/154

BOT CHORD 2-12=-235/474, 11-12=-235/474, 10-11=-235/474

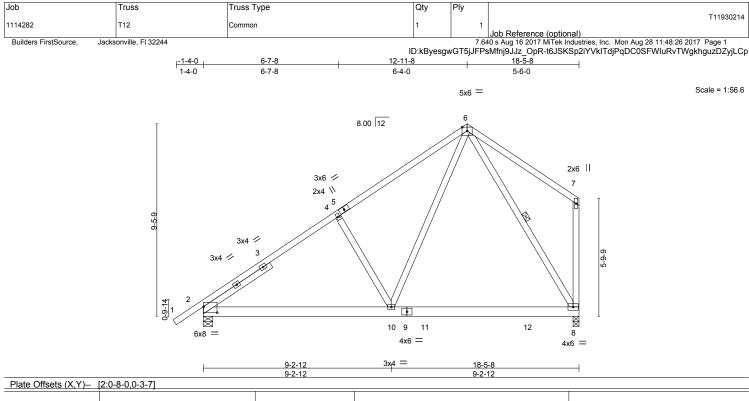
WEBS 4-10=-459/258

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Solid blocking is required on both sides of the truss at joint(s), 2.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 60 lb uplift at joint 8, 75 lb uplift at joint 2 and 58 lb uplift at joint 9.

LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2014/TPI2007	CSI. TC 0.44 BC 0.35 WB 0.33 (Matrix)	Vert(LL) -0.1	4 8-10 >999 180	PLATES GRIP MT20 244/190 Weight: 129 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF	7 No.2		BRACING- TOP CHORD	Structural wood sheathing d	irectly applied or 6-0-0 oc purlins, except
BOT CHORD 2x6 SF	No.2			end verticals.	
WEBS 2x4 SF			BOT CHORD	Rigid ceiling directly applied	0
SLIDER Left 2x	4 SP No.3 4-1-4		WEBS	1 Row at midpt 6	-8
REACTIONS. (Ib/size	e) 2=661/0-5-8, 8=589/0-3-8				

Max Horz 2=193(LC 12) Max Uplift 2=-90(LC 12), 8=-104(LC 12) Max Grav 2=661(LC 1), 8=650(LC 19)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-780/206, 3-4=-690/224, 4-5=-633/245, 5-6=-625/275

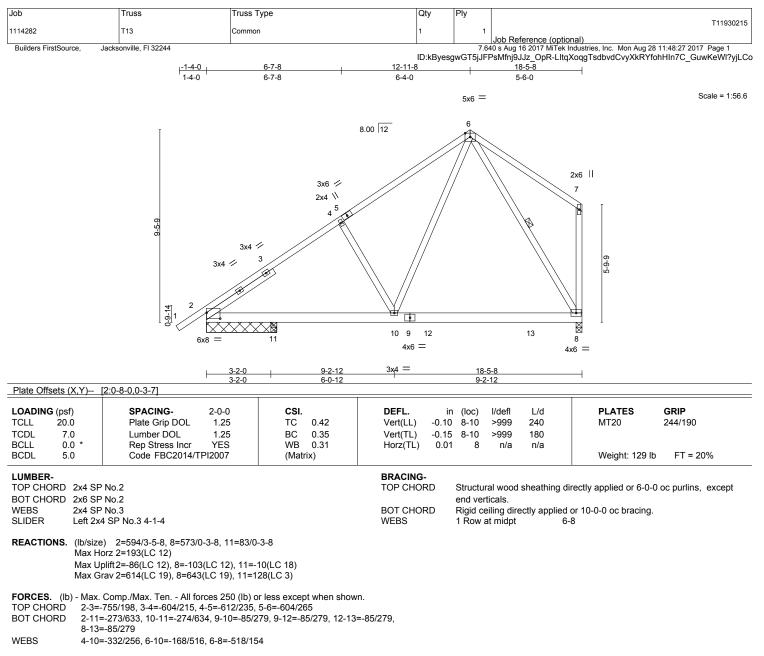
- BOT CHORD 2-10=-285/655, 9-10=-88/285, 9-11=-88/285, 11-12=-88/285, 8-12=-88/285
- WEBS 4-10=-348/263, 6-10=-180/543, 6-8=-532/160

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will 4) fit between the bottom chord and any other members, with BCDL = 5.0psf.

5) Solid blocking is required on both sides of the truss at joint(s), 2.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 90 lb uplift at joint 2 and 104 lb uplift at joint 8.

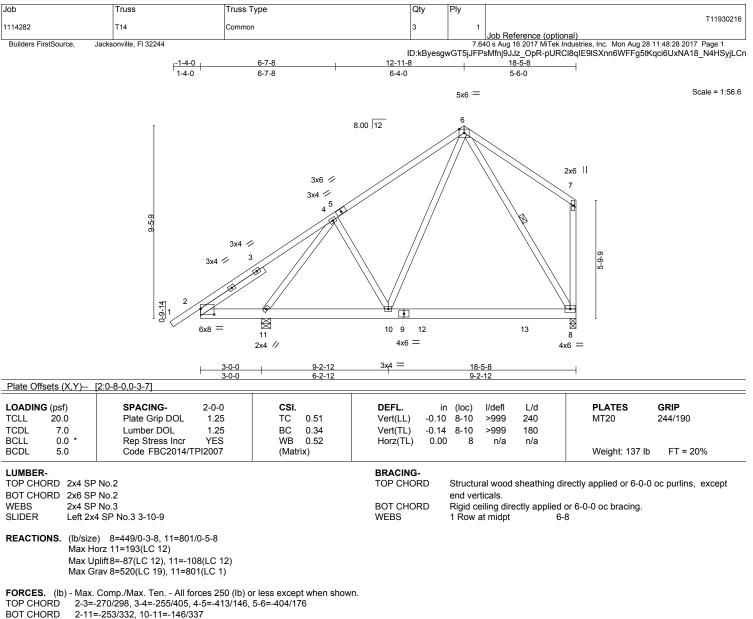
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 5.0psf.


5) Solid blocking is required on both sides of the truss at joint(s), 2.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 86 lb uplift at joint 2, 103 lb uplift at joint 8 and 10 lb uplift at joint 11.

7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

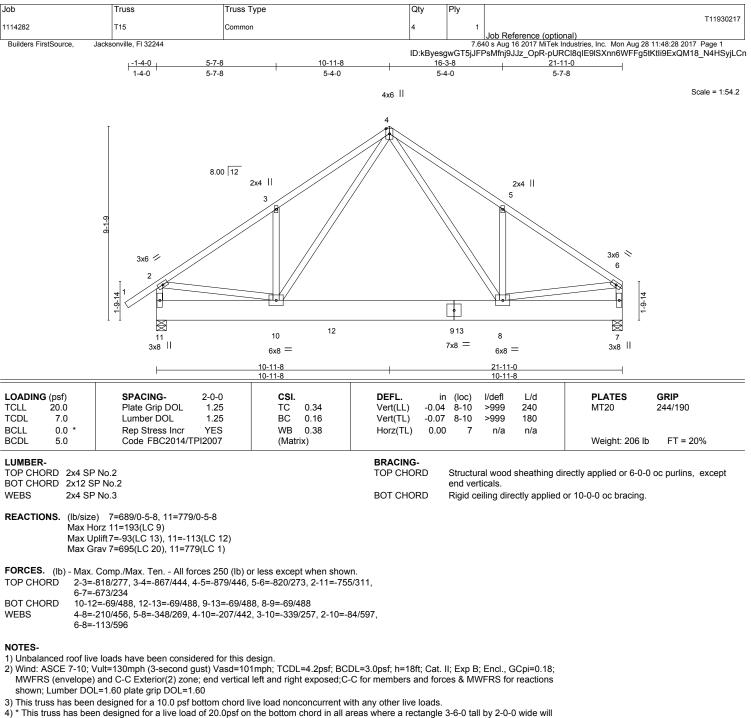
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 MSNITP11 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BOT CHORD2-11=-253/332, 10-11=-146/337WEBS6-10=-69/267, 6-8=-376/90, 4-11=-807/384

NOTES-

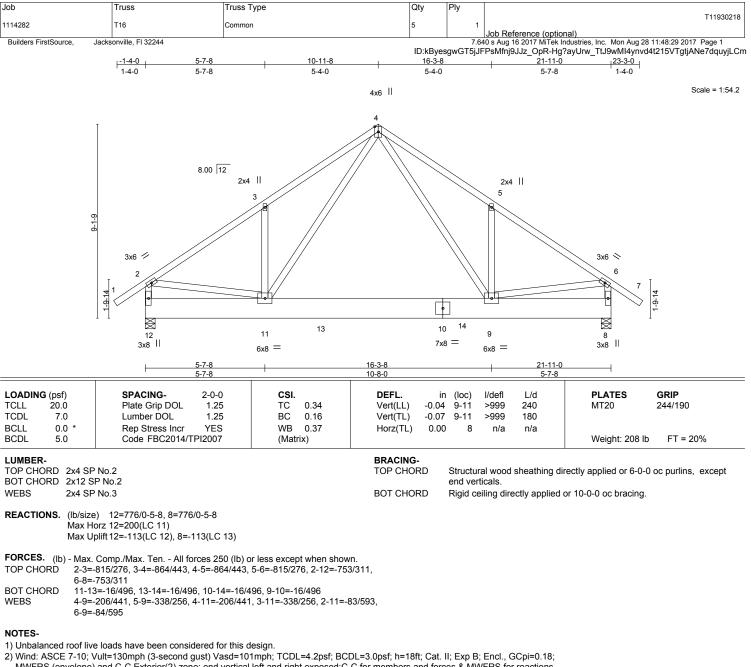
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 5.0psf.

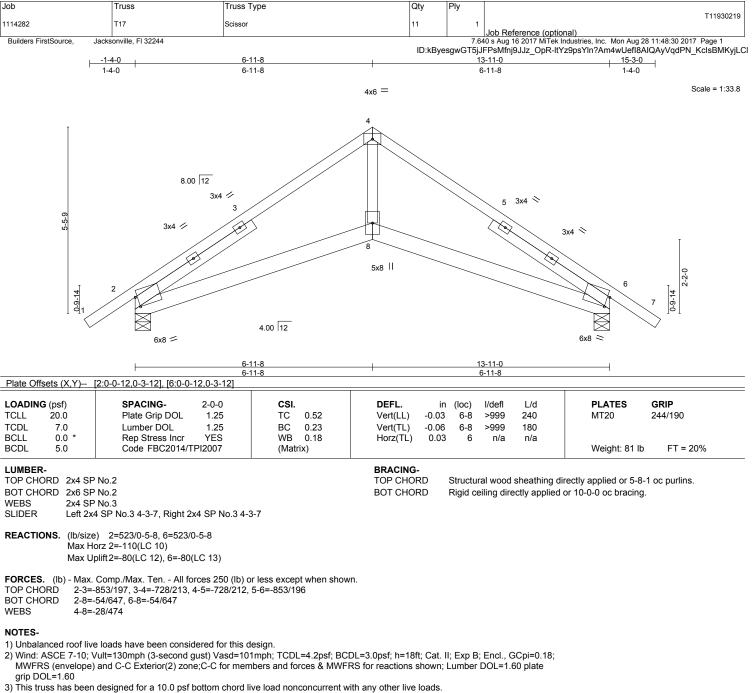
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 8 and 108 lb uplift at joint 11



fit between the bottom chord and any other members, with BCDL = 5.0psf. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 93 lb uplift at joint 7 and 113 lb uplift at joint 11

6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

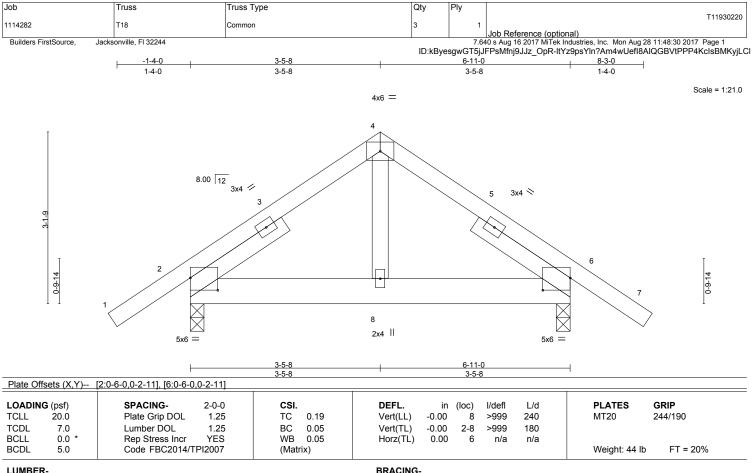
MWFRS (envelope) and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 5.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 113 lb uplift at joint 12 and 113 lb uplift at joint 8.

6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 2, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 80 lb uplift at joint 2 and 80 lb uplift at joint 6.

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 SLIDER Left 2x4 SP No.3 2-2-4, Right 2x4 SP No.3 2-2-4

REACTIONS. (lb/size) 2=299/0-3-0, 6=299/0-3-0 Max Horz 2=64(LC 11) Max Uplift 2=-62(LC 9), 6=-62(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-243/261, 3-4=-173/267, 4-5=-173/268, 5-6=-243/262

NOTES-

1) Unbalanced roof live loads have been considered for this design.

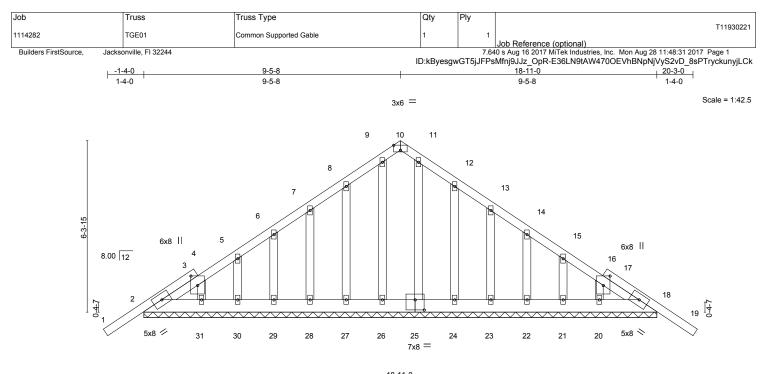
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will 4) fit between the bottom chord and any other members.

5) Solid blocking is required on both sides of the truss at joint(s), 2, 6.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 62 lb uplift at joint 2 and 62 lb uplift at joint 6


7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.25	TC 0.12	Vert(LL) -0	0.00 19	n/r	120	MT20	244/190
CDL 7.0	Lumber DOL 1.25	BC 0.03	Vert(TL) -0	0.01 19	n/r	120		
CLL 0.0 *	Rep Stress Incr YES	WB 0.04	Horz(TL) (0.00 18	n/a	n/a		
CDL 5.0	Code FBC2014/TPI2007	(Matrix)	. ,				Weight: 140 lb	FT = 20%

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 OTHERS 2x4 SP No.3

REACTIONS. All bearings 18-11-0.

(lb) - Max Horz 2=-171(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 26, 27, 28, 29, 30, 31, 24, 23, 22, 21, 20, 18 Max Grav All reactions 250 lb or less at joint(s) 2, 26, 27, 28, 29, 30, 31, 25, 24, 23, 22, 21, 20, 18

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

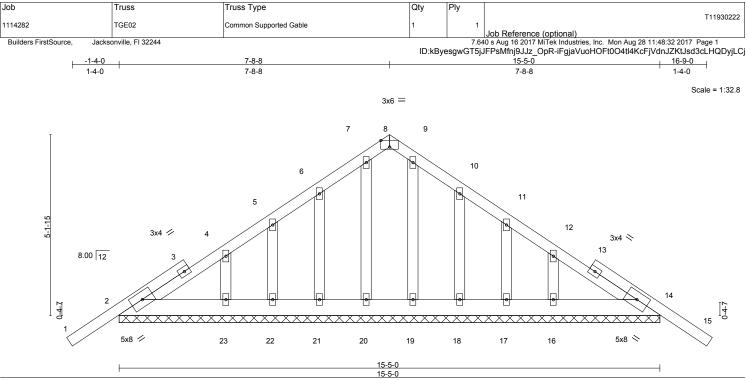
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 1-4-0 oc.


7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 26, 27, 28, 29, 30, 31, 24, 23, 22, 21, 20, 18.

Plate Offsets (X,Y)-- [8:0-3-0,Edge]

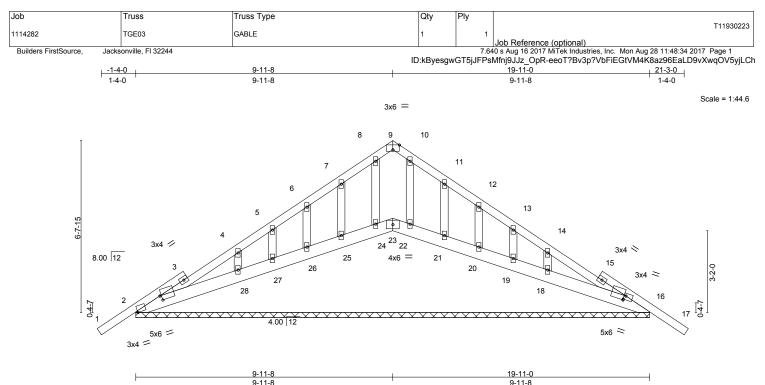
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2014/TPI2007	CSI. TC 0.12 BC 0.02 WB 0.03 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 15 n/r 120 Vert(TL) -0.01 15 n/r 120 Horz(TL) -0.01 15 n/r 120	PLATES GRIP MT20 244/190 Weight: 105 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP	No.2		BRACING- TOP CHORD Structural wood sheathing BOT CHORD Rigid ceiling directly applied	directly applied or 6-0-0 oc purlins.

BOT CHORD 2x6 SP No.2 OTHERS 2x4 SP No.3

REACTIONS. All bearings 15-5-0.

(lb) - Max Horz 2=-142(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 14, 20, 21, 22, 23, 18, 17, 16 Max Grav All reactions 250 lb or less at joint(s) 2, 14, 20, 21, 22, 23, 19, 18, 17, 16


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14, 20, 21, 22, 23, 18, 17, 16.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 14.
- 11) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

Plate Offsets	ts (X,Y) [2	2:0-0-12,0-2-3], [2:1-0-2	,Edge], [9:0-3-	0,Edge], [16	:0-0-12,0-1-	12], [16:0-0-12,0-2	-3]				1	
LOADING (p	psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 2	20.0	Plate Grip DOL	1.25	TC	0.12	Vert(LL)	-0.00	17	n/r	120	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.04	Vert(TL)	-0.00	17	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.04	Horz(TL)	0.00	16	n/a	n/a		
BCDL	5.0	Code FBC2014/T	PI2007	(Matr	ix)						Weight: 119 lb	FT = 20%

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing.

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2OTHERS2x4 SP No.3

REACTIONS. All bearings 19-11-0.

(lb) - Max Horz 2=179(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 23, 16, 24, 25, 26, 27, 21, 20, 19 except 28=-123(LC 12), 18=-127(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 23, 16, 24, 25, 26, 27, 28, 22, 21, 20, 19, 18

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

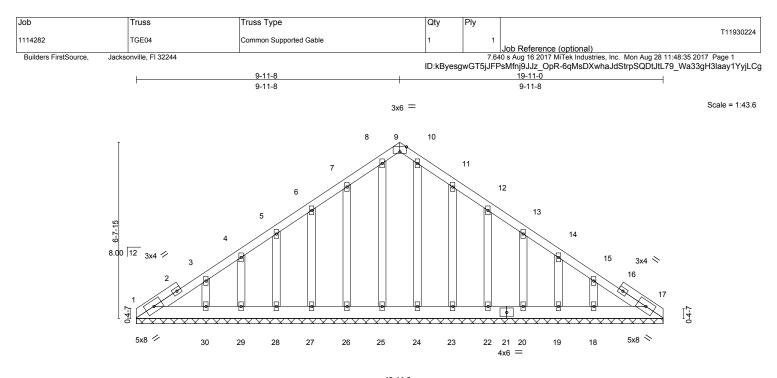
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 23, 16, 24, 25, 26, 27, 21, 20, 19 except (jt=lb) 28=123, 18=127.

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 23, 24, 25, 26, 27, 28, 22, 21, 20, 19, 18.

11) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

19-11-0 19-11

Plate Offsets (X,Y)-- [9:0-3-0.Edge]

LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2014/TPI2007	CSI. TC 0.06 BC 0.02 WB 0.05 (Matrix)	DEFL. Vert(LL) Vert(TL) Horz(TL)	in (lo n/a n/a 0.00	c) l/de - n/ - n/ 17 n/	/a 999 /a 999	PLATES MT20 Weight: 144 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF			BRACING- TOP CHORD BOT CHORD			0	irectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins.

REACTIONS. All bearings 19-11-0.

2x4 SP No.3

(lb) - Max Horz 1=-155(LC 8)

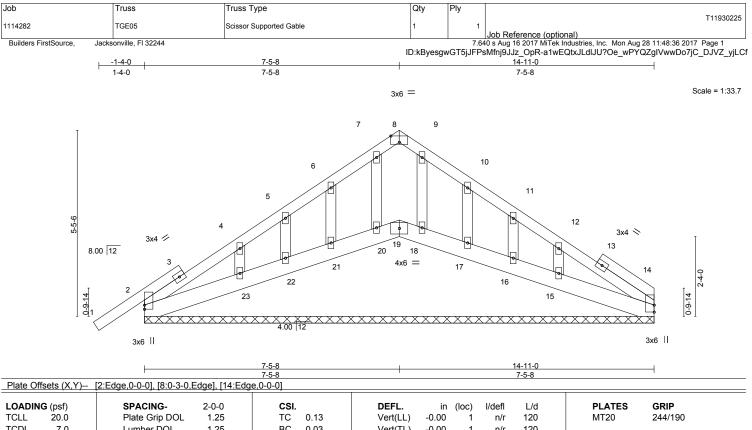
Max Uplift All uplift 100 lb or less at joint(s) 1, 25, 26, 27, 28, 29, 30, 23, 22, 20, 19, 18

Max Grav All reactions 250 lb or less at joint(s) 1, 17, 25, 26, 27, 28, 29, 30, 24, 23, 22, 20, 19, 18

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

OTHERS


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 25, 26, 27, 28, 29, 30, 23, 22, 20, 19, 18.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 17.
- 11) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

LOADING (psf) TCLL 20.0 TCDL 7.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25	CSI. TC 0.13 BC 0.03	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.00 1 n/r 120 MT20 244/190 Vert(TL) -0.00 1 n/r 120 MT20 244/190	
BCLL 0.0 * BCDL 5.0	Rep Stress Incr YES Code FBC2014/TPI2007	WB 0.04 (Matrix)	Horz(TL) 0.00 14 n/a n/a Weight: 90 lb FT =	20%
LUMBER- TOP CHORD 2x4 S	P No.2		BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlin	S.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2OTHERS2x4 SP No.3

REACTIONS. All bearings 14-11-0.

(lb) - Max Horz 2=134(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 14, 2, 19, 20, 21, 22, 17, 16 except 23=-108(LC 12), 15=-120(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 14, 2, 19, 20, 21, 22, 23, 18, 17, 16, 15

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

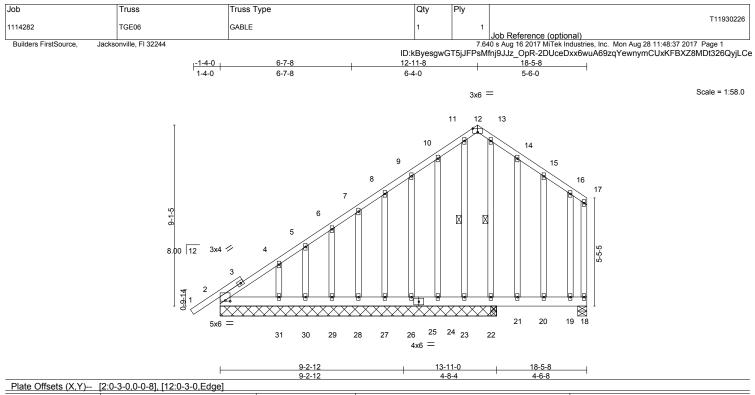
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 1-4-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 2, 19, 20, 21, 22, 17, 16 except (jt=lb) 23=108, 15=120.

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 19, 20, 21, 22, 23, 18, 17, 16, 15.

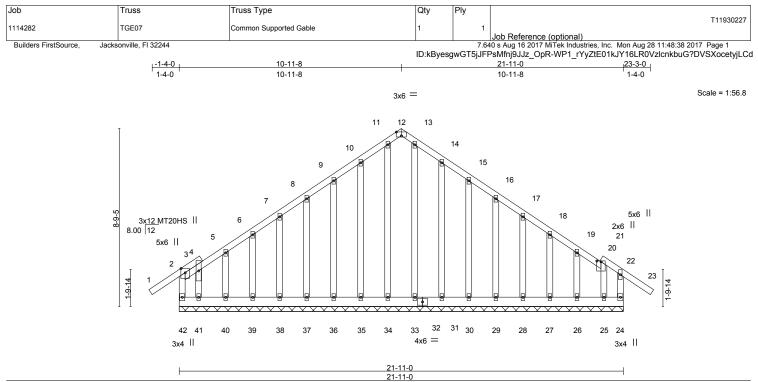
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYESCode FBC2014/TPI2007	CSI. TC 0.09 BC 0.11 WB 0.09 (Matrix)	DEFL. Vert(LL) -0.0 Vert(TL) -0.0 Horz(TL) 0.0	1 20 >999 2 1 20 >999 1	L/d 240 180 n/a	PLATES MT20 Weight: 185 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF	P No.2		BRACING- TOP CHORD	end verticals.	U	5 11) oc purlins, except
WEBS 2x4 SF OTHERS 2x4 SF			BOT CHORD WEBS	Rigid ceiling directl 1 Row at midpt		10-0-0 oc bracing. 3, 13-22	

REACTIONS. All bearings 13-11-0 except (jt=length) 18=0-5-8, 22=0-3-8, 22=0-3-8.

(lb) - Max Horz 2=275(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 2, 18, 24, 26, 27, 28, 29, 30, 31 except 23=-109(LC 24), 22=-126(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 18, 23, 24, 26, 27, 28, 29, 30, 31 except 22=328(LC 1), 22=328(LC 1)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-258/161

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 1-4-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will
- fit between the bottom chord and any other members.
- 8) Solid blocking is required on both sides of the truss at joint(s), 2.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 18, 24, 26, 27, 28, 29, 30, 31 except (jt=lb) 23=109, 22=126.
- 10) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

Plate Offsets (X,Y)-- [12:0-3-0,Edge], [21:0-0-8,0-2-8]

LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.25	CSI. TC 0.28	DEFL. in (loc Vert(LL) -0.01 2	c) l/defl L/d 23 n/r 120	PLATES GRIP MT20 244/190			
TCDL 7.0	Lumber DOL 1.25	BC 0.08	()	23 n/r 120	MT20 244/190 MT20HS 187/143			
BCLL 0.0 * BCDL 5.0	Rep Stress Incr YES Code FBC2014/TPI2007	WB 0.16	Horz(TL) -0.00 2	24 n/a n/a	Weight: 209 lb FT = 20%			
		(Matrix)			Weight. 203 ib 1 1 - 2076			
LUMBER- TOP CHORD 2x4 SF	P No.2		BRACING- TOP CHORD Strue	ctural wood sheathing di	irectly applied or 6-0-0 oc purlins, excep			
BOT CHORD 2x6 SF			end verticals.					
WEBS 2x4 SF OTHERS 2x4 SF			BOT CHORD Rigid	d ceiling directly applied	or 6-0-0 oc bracing.			

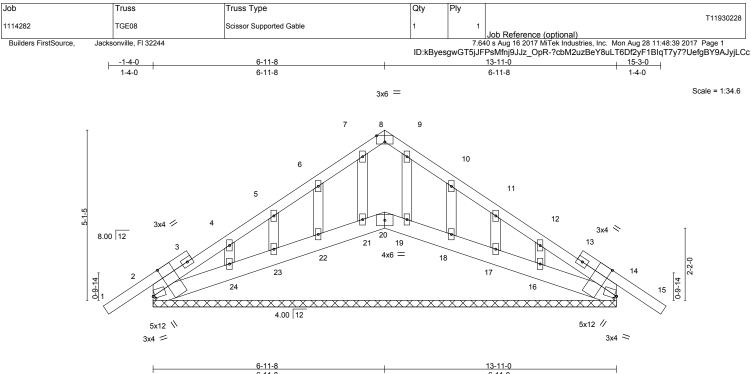
REACTIONS. All bearings 21-11-0.

(lb) - Max Horz 42=-250(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 35, 36, 37, 38, 39, 40, 31, 30, 29, 28, 27, 26 except 42=-248(LC 8), 24=-216(LC 9), 41=-248(LC 9), 25=-235(LC 8) Max Grav All reactions 250 lb or less at joint(s) 34, 35, 36, 37, 38, 39, 40, 33, 31, 30, 29, 28, 27, 26

except 42=294(LC 20), 24=280(LC 19), 41=267(LC 10), 25=250(LC 11)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 10-11=-210/289, 13-14=-210/289


NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 1-4-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 35, 36, 37, 38, 39, 40, 31, 30, 29, 28, 27, 26 except (jt=lb) 42=248, 24=216, 41=248, 25=235.
- 12) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

				6-11-8					6-11-8			
Plate Offse	ets (X,Y)	[2:0-7-0,Edge], [2:0-0-11,	<u>,0-0-15], [8:0-</u>	-3-0,Edge], [1	4:0-0-11,0-	0-15], [14:0-7-0,Ed	ge]					
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.09	Vert(LL)	-0.00	15	n/r	120	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.01	Vert(TL)	-0.00	15	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.02	Horz(TL)	0.00	14	n/a	n/a		
BCDL	5.0	Code FBC2014/T	PI2007	(Matr	ix)						Weight: 85 lb	FT = 20%
					1					1		
LUMBER-	LUMBER- BRACING-											

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 OTHERS 2x4 SP No.3

REACTIONS. All bearings 13-11-0.

(lb) - Max Horz 2=129(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 20, 14, 21, 22, 23, 24, 19, 18, 17, 16, 8 Max Grav All reactions 250 lb or less at joint(s) 2, 20, 14, 21, 22, 23, 24, 19, 18, 17, 16, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

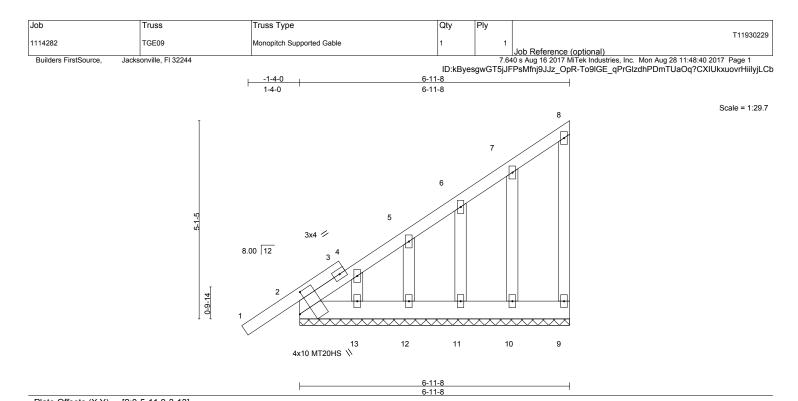
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 1-4-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20, 14, 21, 22, 23, 24, 19, 18, 17, 16, 8.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 20, 14, 21, 22, 23, 24, 19, 18, 17, 16, 8.


11) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

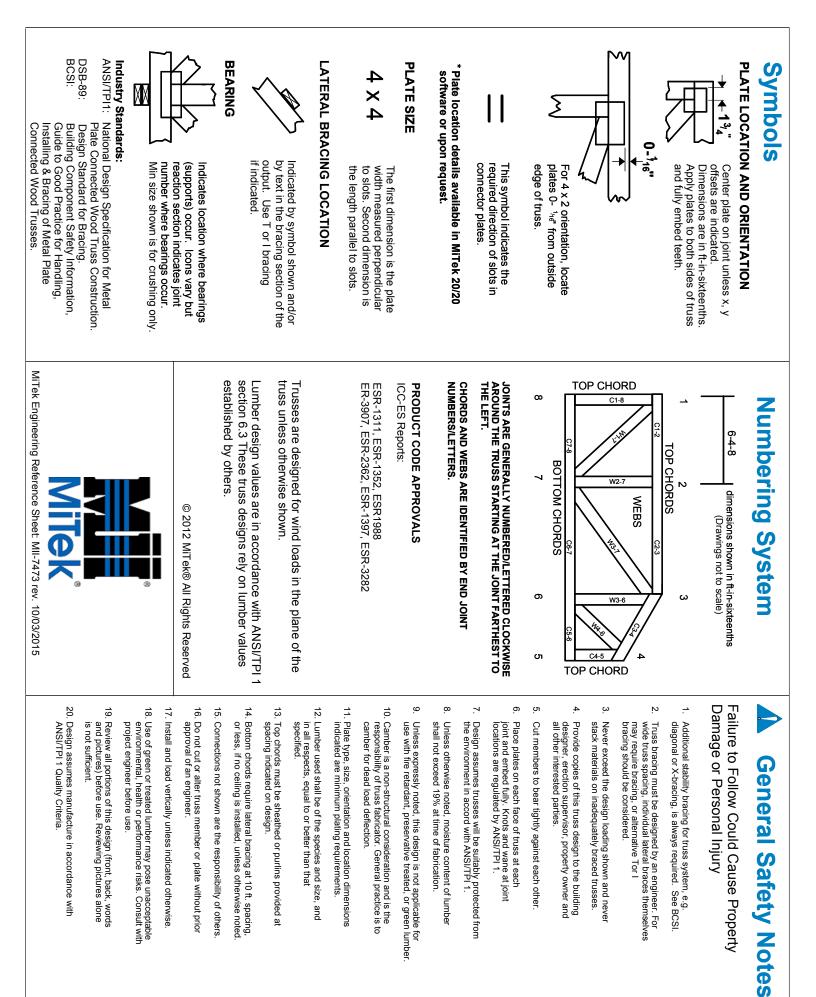
Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

Plate Offs	sets (X,Y)	[2:0-5-11,0-3-13]				1					1	
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.09	Vert(LL)	0.00	<u></u> 1	n/r	120	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.01	Vert(TL)	-0.00	1	n/r	120	MT20HS	187/143
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.02	Horz(TL)	-0.00	9	n/a	n/a		
BCDL	5.0	Code FBC2014/TF	PI2007	(Matr	ix)						Weight: 52 lb	FT = 20%
LUMBER	-					BRACING						
TOP CHC	ORD 2x4 SP	9 No.2				TOP CHOP	RD :	Structu	ral wood	sheathing	directly applied or 6-0-	0 oc purlins, except
BOT CHC	DRD 2x6 SP	9 No.2						end ve	ticals.			
WEBS	2x4 SP	9 No.3				BOT CHOP	RD	Rigid c	eiling dire	ectly applie	d or 10-0-0 oc bracing	, Except:
OTHERS	2x4 SP	9 No.3						6-Ō-0 o	c bracing	: 2-13.	-	

REACTIONS. All bearings 6-11-8.

(lb) - Max Horz 2=195(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 9, 12, 13, 11, 10 Max Grav All reactions 250 lb or less at joint(s) 9, 2, 12, 13, 11, 10


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES.

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are MT20 plates unless otherwise indicated.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will
- fit between the bottom chord and any other members.
- 9) Solid blocking is required on both sides of the truss at joint(s), 2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 12, 13, 11, 10.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
 12) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

